skip to main content


Title: Lactose‐containing hydrogels for enzyme stabilization
ABSTRACT

A lactose‐containing monomer,N‐(2‐lactosylethyl)acrylamide, was synthesized and polymerized withN‐hydroxyethyl acrylamide and 1 wt % ofN,N'‐methylenebis(acrylamide) and potassium persulfate as the initiator to produce hydrogels. The weight percent ofN‐(2‐lactosylethyl)acrylamide were increased from 0 to 100% in increments of 10%. Hydrogels were successfully produced with up to 90 wt % ofN‐(2‐lactosylethyl)acrylamide. Gelation was confirmed by inverted vial tests and rheology measurements. The as‐prepared hydrogels were used for papain stabilization against heat burden and papain that was loaded into hydrogels showed 45% more activity after heating as compared to papain that was heated without hydrogel stabilization. This hydrogel stabilization technique has potential applications in preserving enzyme activity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2016,54, 2507–2514

 
more » « less
NSF-PAR ID:
10239403
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part A: Polymer Chemistry
Volume:
54
Issue:
16
ISSN:
0887-624X
Format(s):
Medium: X Size: p. 2507-2514
Size(s):
["p. 2507-2514"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Glycohydrogels containing 2′‐acrylamidoethyl‐β‐d‐galactopyranoside and varying levels ofN,N′ methylene bisacrylamide and 3‐acrylamidopropyltris(trimethylsiloxy)silane were synthesized to determine the effects of crosslinker and amphipathic balance on equilibrium water content (EWC), bound water population, and hydrogen bonding dynamics at the water–polymer interface. Analogous dimethylacrylamide hydrogels were synthesized for comparison with a system containing lower hydrogen bonding propensity. An approach combining experiment (proton nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption analysis) and molecular dynamics simulations was employed to examine the relationship between bulk hydrogel properties, molecular water mobility, and hydrogen bonding characteristics. It was found that copolymer composition (hydrophobic content) and crosslink concentration in high water content glycohydrogels affect EWC, and by extension, structural water population. The organization of water at the polymer interface is greatly impacted by the surrounding environment, where hindered molecular water mobility promotes water–polymer binding and decreases water–water clustering. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 584–597

     
    more » « less
  2. ABSTRACT

    Shape memory polymers (SMPs) are a class of responsive polymers that have attracted attention in designing biomedical devices because of their potential to improve minimally invasive surgeries. Use of porous SMPs in vascular grafts has been proposed because porosity aids in transfer of fluids through the graft and growth of vascular tissue. However, porosity also allows blood to leak through grafts so preclotting the materials is necessary. Here hydrogels have been synthesized from acrylic acid andN‐hydroxyethyl acrylamide and coated around a porous SMP produced from lactose functionalized polyurea‐urethanes. The biocompatibility of the polymers used to prepare the cross‐linked shape memory material is demonstrated using anin vitrocell assay. As expected, the hydrogel coating enhanced fluid uptake abilities without hindering the shape memory properties. These results indicate that hydrogels can be used in porous SMP materials without inhibiting the shape recovery of the material. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1389–1395

     
    more » « less
  3. ABSTRACT

    The thermal aging behavior of poly(3,3,3‐trifluoropropyl)methylsiloxane was investigated by thermal gravimetric analysis and isothermal aging tests, and the results indicated the degradation mechanism II, oxidation scission of the side groups, played a more important role when the temperature was below 350 °C. The addition of ceria had significantly improved the thermal stability of fluorosilicone rubber (FSR) by inhibiting the oxidation scission. Moreover, two types of ceria including laminar‐structure ceria (LS‐CeO2) and nanoparticle ceria (N‐CeO2) were prepared and surface was modified by KH570 and characterized by scanning electron microscopy, transmission electron microscope, and X‐ray diffractometer. FSR incorporated with modified LS‐CeO2and N‐CeO2revealed a significant improvement on the heat resistant properties. In particular, after having been thermal oxidative aged for 70 h at 250 °C, FSR containing 2 wt % of modified N‐CeO2maintained 72.6% of tensile strength and 63.9% of elongation at break, respectively, while FSR without ceria completely failed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2016,133, 44117.

     
    more » « less
  4. ABSTRACT

    Interpenetrating polymer network (IPN) hydrogels have been fabricated through a facile one‐pot approach from tetra/bifunctional telechelic macromonomers with epoxy, amine, azide, and alkyne groups by orthogonal double click reactions: epoxy‐amine reaction and copper‐catalyzed azide‐alkyne cycloaddition. Both the crosslinked networks are simultaneously constructed in water from the biocompatible poly (ethylene glycol)‐based macromonomers. The crosslinking density of each network was finely tuned by the macromonomer structure, permitting control of network molecular weights between crosslinks of the final gels. Compared to corresponding single network gels, the IPN gels containing both tightly and loosely crosslinked networks exhibited superior mechanical properties with shear moduli above 15 kPa and fracture stresses over 40 MPa. The synthetic versatility of this one‐pot approach will further establish design principles for the next generation of robust hydrogel materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2016,54, 1459–1467

     
    more » « less
  5. Abstract

    Thermogelling hydrogels based on poly(N‐isopropyl acrylamide) (p[NiPAAm]) and crosslinked with a peptide‐bearing macromer poly(glycolic acid)‐poly(ethylene glycol)‐poly(glycolic acid)‐di(but‐2‐yne‐1,4‐dithiol) (PdBT) were fabricated to assess the role of hydrogel charge and lower critical solution temperature (LCST) over time in influencing cellular infiltration and tissue integration in an ex vivo cartilage explant model over 21 days. The p(NiPAAm)‐based thermogelling polymer was synthesized to possess 0, 5, and 10 mol% dimethyl‐γ‐butyrolactone acrylate (DBA) to raise the LCST over time as the lactone rings hydrolyzed. Further, three peptides were designed to impart charge into the hydrogels via conjugation to the PdBT crosslinker. The positively, neutrally, and negatively charged peptides K4 (+), zwitterionic K2E2 (0), and E4 (−), respectively, were conjugated to the modular PdBT crosslinker and the hydrogels were evaluated for their thermogelation behavior in vitro before injection into the cartilage explant models. Samples were collected at days 0 and 21, and tissue integration and cellular infiltration were assessed via mechanical pushout testing and histology. Negatively charged hydrogels whose LCST changed over time (10 mol% DBA) were demonstrated to promote the greatest tissue integration when compared to the positive and neutral gels of the same thermogelling polymer formulation due to increased transport and diffusion across the hydrogel‐tissue interface. Indeed, the negatively charged thermogelling polymer groups containing 5 and 10 mol% DBA demonstrated cellular infiltration and cartilage‐like matrix deposition via histology. This study demonstrates the important role that material physicochemical properties play in dictating cell and tissue behavior and can inform future cartilage tissue engineering strategies.

     
    more » « less