skip to main content


Title: A local radial basis function collocation method to solve the variable‐order time fractional diffusion equation in a two‐dimensional irregular domain

The local radial basis function (RBF) method is a promising solver for variable‐order time fractional diffusion equation (TFDE), as it overcomes the computational burden of the traditional global method. Application of the local RBF method is limited to Fickian diffusion, while real‐world diffusion is usually non‐Fickian in multiple dimensions. This article is the first to extend the application of the local RBF method to two‐dimensional, variable‐order, time fractional diffusion equation in complex shaped domains. One of the main advantages of the local RBF method is that only the nodes located in the subdomain, surrounding the local point, need to be considered when calculating the numerical solution at this point. This approach can perform well with large scale problems and can also mitigate otherwise ill‐conditioned problems. The proposed numerical approach is checked against two examples with curved boundaries and known analytical solutions. Shape parameter and subdomain node number are investigated for their influence on the accuracy of the local RBF solution. Furthermore, quantitative analysis, based on root‐mean‐square error, maximum absolute error, and maximum error of the partial derivative indicates that the local RBF method is accurate and effective in approximating the variable‐order TFDE in two‐dimensional irregular domains.

 
more » « less
NSF-PAR ID:
10240214
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Numerical Methods for Partial Differential Equations
Volume:
34
Issue:
4
ISSN:
0749-159X
Page Range / eLocation ID:
p. 1209-1223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for real-world problems with complex interfaces; and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh generators for complex geometry). Design/methodology/approach This study extends the recently developed optimal local truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more general case of discontinuous coefficients that can be applied to domains with different material properties (e.g. different inclusions, multi-material structural components, etc.). This study develops OLTEM using compact 9-point and 25-point stencils that are similar to those for linear and quadratic finite elements. In contrast to finite elements and other known numerical techniques for interface problems with conformed and unfitted meshes, OLTEM with 9-point and 25-point stencils and unfitted Cartesian meshes provides the 3-rd and 11-th order of accuracy for irregular interfaces, respectively; i.e. a huge increase in accuracy by eight orders for the new 'quadratic' elements compared to known techniques at similar computational costs. There are no unknowns on interfaces between different materials; the structure of the global discrete system is the same for homogeneous and heterogeneous materials (the difference in the values of the stencil coefficients). The calculation of the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of OLTEM at a given stencil width. The numerical results with irregular interfaces show that at the same number of degrees of freedom, OLTEM with the 9-points stencils is even more accurate than the 4-th order finite elements; OLTEM with the 25-points stencils is much more accurate than the 7-th order finite elements with much wider stencils and conformed meshes. Findings The significant increase in accuracy for OLTEM by one order for 'linear' elements and by 8 orders for 'quadratic' elements compared to that for known techniques. This will lead to a huge reduction in the computation time for the problems with complex irregular interfaces. The use of trivial unfitted Cartesian meshes significantly simplifies the solution and reduces the time for the data preparation (no need in complicated mesh generators for complex geometry). Originality/value It has been never seen in the literature such a huge increase in accuracy for the proposed technique compared to existing methods. Due to a high accuracy, the proposed technique will allow the direct solution of multiscale problems without the scale separation. 
    more » « less
  2. This paper is concerned with the optimized Schwarz waveform relaxation method and Ventcel transmission conditions for the linear advection-diffusion equation. A mixed formulation is considered in which the flux variable represents both diffusive and advective flux, and Lagrange multipliers are introduced on the interfaces between nonoverlapping subdomains to handle tangential derivatives in the Ventcel conditions. A space-time interface problem is formulated and is solved iteratively. Each iteration involves the solution of time-dependent problems with Ventcel boundary conditions in the subdomains. The subdomain problems are discretized in space by a mixed hybrid finite element method based on the lowest-order Raviart-Thomas space and in time by the backward Euler method. The proposed algorithm is fully implicit and enables different time steps in the subdomains. Numerical results with discontinuous coefficients and various Peclét numbers validate the accuracy of the method with nonconforming time grids and confirm the improved convergence properties of Ventcel conditions over Robin conditions.

     
    more » « less
  3. The Cable equation is one of the most fundamental equations for modeling neuronal dynamics. In this article, we consider a high order compact finite difference numerical solution for the fractional Cable equation, which is a generalization of the classical Cable equation by taking into account the anomalous diffusion in the movement of the ions in neuronal system. The resulting finite difference scheme is unconditionally stable and converges with the convergence order ofin maximum norm, 1‐norm and 2‐norm. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix‐vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work fromrequired by traditional methods towithout using any lossy compression, whereandτis the size of time step,andhis the size of space step. Moreover, we give a compact finite difference scheme and consider its stability analysis for two‐dimensional fractional Cable equation. The applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.

     
    more » « less
  4. Abstract

    Spatiotemporal fractional‐derivative models (FDMs) have been increasingly used to simulate non‐Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one‐dimensional fractional diffusion. Both the zero‐value and nonzero‐value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann‐Liouville fractional derivative (capturing nonzero‐value spatial‐nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional‐diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle‐tracking algorithm for non‐Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero‐value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random‐walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

     
    more » « less
  5. Abstract

    The optimal local truncation error method (OLTEM) has been developed for 2‐D time‐dependent elasticity problems on irregular domains and trivial unfitted Cartesian meshes. Compact nine‐point uniform and nonuniform stencils (similar to those for linear finite elements on uniform meshes) are used with OLTEM. The stencil coefficients are assumed to be unknown and are calculated by the minimization of the local truncation error. It is shown that the second order of accuracy is the maximum possible accuracy for nine‐point stencils independent of the numerical technique used for their derivations. The special treatment of the Neumann boundary conditions has been developed that does not increase the size of the stencils. The cases of the nondiagonal and diagonal mass matrices are considered for OLTEM. The results of numerical examples are in agreement with the theoretical findings. They also show that due to the minimization of the local truncation error, OLTEM with the nondiagonal mass matrix is much more accurate than linear finite elements and than quadratic and cubic finite elements (up to the engineering accuracy of 0.1%–1%) at the same numbers of degrees of freedom. The proposed numerical technique can be efficiently used for many engineering applications including geomechanics.

     
    more » « less