skip to main content


Title: Gridded‐based LPV control of a Clipper Liberty wind turbine
Abstract

This paper proposes a linear parameter varying (LPV) control design for a Clipper Liberty C96 2.5 MW wind turbine to operate in all wind conditions. A standard approach is to use multiple single‐input, single‐output loops for control objectives at different wind speeds. This LPV controller instead takes these objectives into a uniformed multi‐input, multi‐output design framework. The key difference is that the LPV controller is specifically designed to smoothly transition from Region 2 to Region 3 operation. Reducing structural loads is another major concern in the design. Synthesis of the controller relies on a gridded‐based LPV model of the turbine, which is constructed by interpolation of linearized turbine models at different wind speeds. To overcome the conservativeness in the design, parameter varying rates will be considered based on turbulent wind conditions. The performance of the LPV controller is evaluated using a high fidelity FAST model provided by Clipper. The LPV controller is directly compared with the baseline controller currently operating on the turbine. Simulations and analysis show that the LPV controller meets all performance objectives and has better load reduction performance.

 
more » « less
NSF-PAR ID:
10241076
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Wind Energy
Volume:
21
Issue:
11
ISSN:
1095-4244
Page Range / eLocation ID:
p. 1106-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Robust control of parameter‐dependent input delay linear parameter‐varying (LPV) systems via gain‐scheduled dynamic output‐feedback control is considered in this paper. The controller is designed to provide disturbance rejection in the context of the induced‐norm or thenorm of the closed‐loop system in the presence of uncertainty and disturbances. A reciprocally convex approach is employed to bound the Lyapunov‐Krasovskii functional derivative and extract sufficient conditions for the controller characterization in terms of linear matrix inequalities (LMIs). The approach does not require the rate of the delay to be bounded, hence encompasses a broader family of input‐delay LPV systems with fast‐varying delays. The method is then applied to the air‐fuel ratio (AFR) control in spark ignition (SI) engines where the delay and the plant parameters are functions of the engine speed and mass air flow. The objectives are to track the commanded AFR signal and to optimize the performance of the three‐way catalytic converter (TWC) through the precise AFR control and oxygen level regulation, resulting in improved fuel efficiency and reduced emissions. The designed AFR controller seeks to provide canister purge disturbance rejection over the full operating envelope of the SI engine in the presence of uncertainties. Closed‐loop simulation results are presented to validate the controller performance and robustness while meeting AFR tracking and disturbance rejection requirements.

     
    more » « less
  2. null (Ed.)
    This study presents a data-driven identi cation method based on Kernelized Canonical Correlation Analysis (KCCA) approach to generate a state-space Linear Parameter-Varying (LPV) dynamic representation for the RCCI engine combustion. An LPV model is used to estimate RCCI combustion phasing (CA50) and indicated mean e ective pressure (IMEP) based on fuel injection timing and quantity. The proposed data-driven method does not require prior knowledge of the plant model states and adjusts number of states to increase the accuracy of the identi ed state-space model. The results demonstrate that the proposed data-driven KCCA-LPV approach provides a dependable technique to establish a fast and reasonably accurate RCCI combustion model. The established model is then incorporated in a design of a constrained MIMO Model Predictive Controller (MPC) to track desired crank angle for 50% fuel burnt and IMEP at various engine conditions. The controller performance results demonstrate that the established data-driven constrained MPC combustion controller can follow desired CA50 and IMEP with less than 1.5 CAD and 37 kPa error, respectively. 
    more » « less
  3. null (Ed.)
    Abstract

    This paper presents a framework to refine identified artificial neural networks (ANN) based state-space linear parameter-varying (LPV-SS) models with closed-loop data using online transfer learning. An LPV-SS model is assumed to be first identified offline using inputs/outputs data and a model predictive controller (MPC) designed based on this model. Using collected closed-loop batch data, the model is further refined using online transfer learning and thus the control performance is improved. Specifically, fine-tuning, a transfer learning technique, is employed to improve the model. Furthermore, the scenario where the offline identified model and the online controlled system are “similar but not identitical” is discussed. The proposed method is verified by testing on an experimentally validated high-fidelity reactivity controlled compression ignition (RCCI) engine model. The verification results show that the new online transfer learning technique combined with an adaptive MPC law improves the engine control performance to track requested engine loads and desired combustion phasing with minimum errors.

     
    more » « less
  4. Reactivity controlled compression ignition (RCCI) engines center on a combustion strategy with higher thermal efficiency, lower particulate matter (PM), and lower oxides of nitrogen (NOx) emissions compared to conventional diesel combustion (CDC) engines. However, real time optimal control of RCCI engines is challenging during transient operation due to the need for high fidelity combustion models. Development of a simple, yet accurate control-oriented RCCI model from physical laws is time consuming and often requires substantial calibrations. To overcome these challenges, data-driven models can be developed. In this paper, a data-driven linear parameter varying (LPV) model for an RCCI engine is developed. An LPV state space model is identified to predict RCCI combustion phasing as a function of multiple RCCI control variables. The results show that the proposed method provides a fast and reliable route to identify an RCCI engine model. The developed model is then used for the design of a model predictive controller (MPC) to control crank angle for 50% fuel burnt (CA50) for varying engine conditions. The experimental results show that the designed MPC with the data-driven LPV model can track desired CA50 with less than 1 crank angle degree (CAD) error against changes in engine load. 
    more » « less
  5. null (Ed.)
    Powered ankle exoskeletons that apply assistive torques with optimized timing and magnitude can reduce metabolic cost by ∼10% compared to normal walking. However, finding individualized optimal control parameters is time consuming and must be done independently for different walking modes (e.g., speeds, slopes). Thus, there is a need for exoskeleton controllers that are capable of continuously adapting torque assistance in concert with changing locomotor demands. One option is to use a biologically inspired, model-based control scheme that can capture the adaptive behavior of the human plantarflexors during natural gait. Here, based on previously demonstrated success in a powered ankle-foot prosthesis, we developed an ankle exoskeleton controller that uses a neuromuscular model (NMM) comprised of a Hill type musculotendon driven by a simple positive force feedback reflex loop. To examine the effects of NMM reflex parameter settings on (i) ankle exoskeleton mechanical performance and (ii) users’ physiological response, we recruited nine healthy, young adults to walk on a treadmill at a fixed speed of 1.25 m/s while donning bilateral tethered robotic ankle exoskeletons. To quantify exoskeleton mechanics, we measured exoskeleton torque and power output across a range of NMM controller Gain (0.8–2.0) and Delay (10–40 ms) settings, as well as a High Gain/High Delay (2.0/40 ms) combination. To quantify users’ physiological response, we compared joint kinematics and kinetics, ankle muscle electromyography and metabolic rate between powered and unpowered/zero-torque conditions. Increasing NMM controller reflex Gain caused increases in average ankle exoskeleton torque and net power output, while increasing NMM controller reflex Delay caused a decrease in net ankle exoskeleton power output. Despite systematic reduction in users’ average biological ankle moment with exoskeleton mechanical assistance, we found no NMM controller Gain or Delay settings that yielded changes in metabolic rate. Post hoc analyses revealed weak association at best between exoskeleton and biological mechanics and changes in users’ metabolic rate. Instead, changes in users’ summed ankle joint muscle activity with powered assistance correlated with changes in their metabolic energy use, highlighting the potential to utilize muscle electromyography as a target for on-line optimization in next generation adaptive exoskeleton controllers. 
    more » « less