skip to main content

Title: Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations

Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high‐resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Page Range / eLocation ID:
p. 3539-3549
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In light of rapid environmental change, quantifying the contribution of regional‐ and local‐scale drivers of coral persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model with coral–algal competition, including seasonal larval dispersal and external spatiotemporal forcing. We tested coral sensitivity in 2,083 reefs across the CT region and surrounding areas under potential future temperature regimes, with and without interannual climate variability, exploring a range of 0.5–2.0°C overall increase in temperature in the system by 2054. We found that among future projections, reef survival probability and mean percent coral cover over time were largely determined by the presence or absence of interannual sea surface temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time series that were filtered to remove interannual variability had approximately double the chance of survival than reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and bleaching sensitivity in coral networks.

    more » « less
  2. Abstract

    Increasing ocean temperatures have widespread consequences for coral reefs, one of which is coral bleaching. We analyzed a global network of associations between coral species and Symbiodiniaceae for resistance to temperature stress and robustness to perturbations. Null networks were created by changing either the physiological parameters of the nodes or the structures of the networks. We developed a bleaching model in which each link, association, is given a weight based on temperature thresholds for specific host–symbiont pairs and links are removed as temperature increases. Resistance to temperature stress was determined from the response of the networks to the bleaching model. Ecological robustness, defined by how much perturbation is needed to decrease the number of nodes by 50%, was determined for multiple removal models that considered traits of the hosts, symbionts, and their associations. Network resistance to bleaching and robustness to perturbations differed from the null networks and varied across spatial scales, supporting that thermal tolerances, local association patterns, and environment play an important role in network persistence. Networks were more robust to attacks on associations than to attacks on species. Although the global network was fairly robust to random link removals, when links are removed according to the bleaching model, robustness decreases by about 20%. Specific environmental attacks, in the form of increasing temperatures, destabilize the global network of coral species and Symbiodiniaceae. On a global scale, the network was more robust to removals of links with susceptible Symbiodiniaceae than it was to removals of links with susceptible hosts. Thus, the symbionts convey more stability to the symbiosis than the hosts when the system is under an environmental attack. However, our results also provide evidence that the environment of the networks affects robustness to link perturbations. Our work shows that ecological resistance and robustness can be assessed through network analysis that considers specific biological traits and functional weaknesses. The global network of associations between corals and Symbiodiniaceae and its distribution of thermal tolerances are non‐random, and the evolution of this architecture has led to higher sensitivity to environmental perturbations.

    more » « less
  3. Abstract

    Coral reefs are experiencing unprecedented declines in health on a global scale leading to severe reductions in coral cover. One major cause of this decline is increasing sea surface temperature. However, conspecific colonies separated by even small spatial distances appear to show varying responses to this global stressor. One factor contributing to differential responses to heat stress is variability in the coral's micro‐environment, such as the amount of water flow a coral experiences. High flow provides corals with a variety of health benefits, including heat stress mitigation. Here, we investigate how water flow affects coral gene expression and provides resilience to increasing temperatures. We examined host and photosymbiont gene expression ofAcroporacf.pulchracolonies in discrete in situ flow environments during a natural bleaching event. In addition, we conducted controlled ex situ tank experiments where we exposedA. cf.pulchrato different flow regimes and acute heat stress. Notably, we observed distinct flow‐driven transcriptomic signatures related to energy expenditure, growth, heterotrophy and a healthy coral host–photosymbiont relationship. We also observed disparate transcriptomic responses during bleaching recovery between the high‐ and low‐flow sites. Additionally, corals exposed to high flow showed “frontloading” of specific heat‐stress‐related genes such as heat shock proteins, antioxidant enzymes, genes involved in apoptosis regulation, innate immunity and cell adhesion. We posit that frontloading is a result of increased oxidative metabolism generated by the increased water movement. Gene frontloading may at least partially explain the observation that colonies in high‐flow environments show higher survival and/or faster recovery in response to bleaching events.

    more » « less
  4. Abstract

    The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral‐bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral‐reef processes, will not only rapidly advance coral‐reef science but will also provide necessary information to guide decision‐making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.

    more » « less
  5. Increasing ocean temperatures threaten coral reefs globally, but corals residing in habitats that experience high thermal variability are thought to be better adapted to survive climate-induced heat stress. Here, we used long-term ecological observations and in situ temperature data from Heron Island, southern Great Barrier Reef to investigate how temperature dynamics within various thermally variable vs. thermally stable reef habitats change during a marine heatwave and the resulting consequences for coral community survival. During the heatwave, thermally variable habitats experienced larger surges in daily mean and maxima temperatures compared to stable sites, including extreme hourly incursions up to 36.5 °C. The disproportionate increase in heat stress in variable habitats corresponded with greater subsequent declines in hard coral cover, including a three-times greater decline within the thermally variable Reef Flat (70%) and Deep Lagoon (83%) than within thermally stable habitats along sheltered and exposed areas of the reef slope (0.3–19%). Interestingly, the thermally variable Reef Crest experienced comparatively small declines (26%), avoiding the most severe tidal ponding and resultant heat stress likely due to proximity to the open ocean equating to lower seawater residence times, greater mixing, and/or increased flow. These results highlight that variable thermal regimes, and any acclimatization or adaptation to elevated temperatures that may lead to, do not necessarily equate to protection against bleaching and mortality during marine heatwaves. Instead, thermally stable habitats that have greater seawater exchange with the open ocean may offer the most protection to corals during the severe marine heatwaves that accompany a changing climate. 
    more » « less