Abstract The increasing availability and complexity of next-generation sequencing (NGS) data sets make ongoing training an essential component of conservation and population genetics research. A workshop entitled “ConGen 2018” was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g., Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists.
more »
« less
Recent advances in conservation and population genomics data analysis
Abstract New computational methods and next‐generation sequencing (NGS) approaches have enabled the use of thousands or hundreds of thousands of genetic markers to address previously intractable questions. The methods and massive marker sets present both new data analysis challenges and opportunities to visualize, understand, and apply population and conservation genomic data in novel ways. The large scale and complexity of NGS data also increases the expertise and effort required to thoroughly and thoughtfully analyze and interpret data. To aid in this endeavor, a recent workshop entitled “Population Genomic Data Analysis,” also known as “ConGen 2017,” was held at the University of Montana. The ConGen workshop brought 15 instructors together with knowledge in a wide range of topics including NGS data filtering, genome assembly, genomic monitoring of effective population size, migration modeling, detecting adaptive genomic variation, genomewide association analysis, inbreeding depression, and landscape genomics. Here, we summarize the major themes of the workshop and the important take‐home points that were offered to students throughout. We emphasize increasing participation by women in population and conservation genomics as a vital step for the advancement of science. Some important themes that emerged during the workshop included the need for data visualization and its importance in finding problematic data, the effects of data filtering choices on downstream population genomic analyses, the increasing availability of whole‐genome sequencing, and the new challenges it presents. Our goal here is to help motivate and educate a worldwide audience to improve population genomic data analysis and interpretation, and thereby advance the contribution of genomics to molecular ecology, evolutionary biology, and especially to the conservation of biodiversity.
more »
« less
- PAR ID:
- 10245628
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Evolutionary Applications
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 1752-4571
- Page Range / eLocation ID:
- p. 1197-1211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The boom of massive parallel sequencing (MPS) technology and its applications in conservation of natural and managed populations brings new opportunities and challenges to meet the scientific questions that can be addressed. Genomic conservation offers a wide range of approaches and analytical techniques, with their respective strengths and weaknesses that rely on several implicit assumptions. However, finding the most suitable approaches and analysis regarding our scientific question are often difficult and time‐consuming. To address this gap, a recent workshop entitled ‘ConGen 2015’ was held at Montana University in order to bring together the knowledge accumulated in this field and to provide training in conceptual and practical aspects of data analysis applied to the field of conservation and evolutionary genomics. Here, we summarize the expertise yield by each instructor that has led us to consider the importance of keeping in mind the scientific question from sampling to management practices along with the selection of appropriate genomics tools and bioinformatics challenges.more » « less
-
Abstract Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.more » « less
-
Abstract The Targeting Induced Local Lesions in Genomes (TILLING) technology is a reverse genetic strategy broadly applicable to every kind of genome and represents an attractive tool for functional genomic and agronomic applications. It consists of chemical random mutagenesis followed by high-throughput screening of point mutations in targeted genomic regions. Although multiple methods for mutation discovery in amplicons have been described, next-generation sequencing (NGS) is the tool of choice for mutation detection because it quickly allows for the analysis of a large number of amplicons. The aim of the present work was to screen a previously generated sunflower TILLING population and identify alterations in genes involved in several important and complex physiological processes. Twenty-one candidate sunflower genes were chosen as targets for the screening. The TILLING by sequencing strategy allowed us to identify multiple mutations in selected genes and we subsequently validated 16 mutations in 11 different genes through Sanger sequencing. In addition to addressing challenges posed by outcrossing, our detection and validation of mutations in multiple regulatory loci highlights the importance of this sunflower population as a genetic resource.more » « less
-
Grueber, Catherine E (Ed.)Abstract Landscape genomics can harness environmental and genetic data to inform conservation decisions by providing essential insights into how landscapes shape biodiversity. The massive increase in genetic data afforded by the genomic era provides exceptional resolution for answering critical conservation genetics questions. The accessibility of genomic data for non‐model systems has also enabled a shift away from population‐based sampling to individual‐based sampling, which now provides accurate and robust estimates of genetic variation that can be used to examine the spatial structure of genomic diversity, population connectivity and the nature of environmental adaptation. Nevertheless, the adoption of individual‐based sampling in conservation genetics has been slowed due, in large part, to concerns over how to apply methods developed for population‐based sampling to individual‐based sampling schemes. Here, we discuss the benefits of individual‐based sampling for conservation and describe how landscape genomic methods, paired with individual‐based sampling, can answer fundamental conservation questions. We have curated key landscape genomic methods into a user‐friendly, open‐source workflow, which we provide as a new R package, A Landscape Genomics Analysis Toolkit in R (algatr). Thealgatrpackage includes novel added functionality for all of the included methods and extensive vignettes designed with the primary goal of making landscape genomic approaches more accessible and explicitly applicable to conservation biology.more » « less