Plant genotype, water stress and their interaction are among the factors contributing to the susceptibility of plants to herbivory. The plant's nitrogen concentration, a critical and often limiting nutrient, differs with plant genotype and water stress. Still, few studies have investigated the impact of the interaction between genotype and water stress on herbivory and plant nitrogen. We established a common garden in Duluth, MN, of tall goldenrod, Lace bugs had oviposition, nymph and adult preferences among host plant genotypes, water treatments and among genotype and water treatment combinations. Nymph and adult survival and adult mass varied significantly due to plant genotype, water treatment, the interaction between plant and water treatment and the interaction of treatment with lace bug density. Oviposition preference and offspring performance were significantly positively related. Leaf nitrogen increased with the increasing severity of the water limitation in the absence of lace bugs. However, in the presence of lace bugs, there was no difference in nitrogen among water treatments. We hypothesize that lace bugs reduce leaf nitrogen concentration to a lower threshold and then move between plants until nitrogen concentration equalises among all plants.
Stress and vigor are endpoints on a continuum of the suitability of plants for insect herbivores. Senescence‐feeding insects, such as the chrysanthemum lace bug,
- PAR ID:
- 10245799
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Entomologia Experimentalis et Applicata
- Volume:
- 160
- Issue:
- 1
- ISSN:
- 0013-8703
- Format(s):
- Medium: X Size: p. 1-10
- Size(s):
- p. 1-10
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Solidago altissima, collected from a local Minnesota site to analyse the effects of goldenrod genotype and water stress on leaf nitrogen and the preference and performance of the chrysanthemum lace bug,Corythucha marmorata . -
Abstract Flowering time and water‐use efficiency (
WUE ) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time,WUE , andWUE plasticity to drought inArabidopsis thaliana , we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) IsWUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions ofA. thaliana grown in well‐watered and season‐ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment.WUE and flowering time were consistently positively genetically correlated.WUE was correlated withWUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and lowWUE , with drought favoring earlier flowering significantly more than well‐watered conditions. Selection for lowerWUE was marginally stronger under drought. There were no net fitness costs ofWUE plasticity.WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation betweenWUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions ofA. thaliana .WUE plasticity may be favored over completely fixed development in environments with periodic drought. -
Abstract Plant steroid hormones brassinosteroids (
BR s) regulate plant growth and development at many different levels. Recent research has revealed that stress‐responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factorRD 26 is regulated byBR signaling and antagonizesBES 1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activateRD 26 during drought are still unknown. Here, we demonstrate that the function ofRD 26 is modulated byGSK 3‐like kinaseBIN 2 and protein phosphatase 2CABI 1. We show thatABI 1, a negative regulator inabscisic acid (ABA) signaling, dephosphorylates and destabilizesBIN 2 to inhibitBIN 2 kinase activity.RD 26 protein is stabilized byABA and dehydration in aBIN 2‐dependent manner.BIN 2 directly interacts and phosphorylatesRD 26in vitro andin vivo .BIN 2 phosphorylation ofRD 26 is required forRD 26 transcriptional activation on drought‐responsive genes.RD 26 overexpression suppressed the brassinazole (BRZ) insensitivity ofBIN 2 triple mutantbin2 bil1 bil2 , andBIN 2 function is required for the drought tolerance ofRD 26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relievesABI 1 inhibition ofBIN 2, allowingBIN 2 activation. Sequentially,BIN 2 phosphorylates and stabilizesRD 26 to promote drought stress response. -
Summary Plant small
RNA s (sRNA s) modulate key physiological mechanisms through post‐transcriptional and transcriptional silencing of gene expression. SmallRNA s fall into two major categories: those are reliant onRNA ‐dependentRNA polymerases ( s) for biogenesis and those that are not. KnownRDR /RDR 12 /6 ‐dependentsRNA s include phased and repeat‐associated short interferingRNA s, while known /RDR 12 /6 ‐independentsRNA s are primarily microRNA s (miRNA ) and other hairpin‐derivedsRNA s. In this study we produced and analyzedsRNA ‐seq libraries fromrdr1 /rdr2 /rdr6 triple mutant plants. We found 58 previously annotated miRNA loci that were reliant on , ‐RDR 12 , or ‐6 function, casting doubt on their classification. We also found 38 /RDR 12 /6‐independentsRNA loci that are not s or otherwise hairpin‐derived, and did not fit into other known paradigms forMIRNA sRNA biogenesis. These 38sRNA ‐producing loci have as‐yet‐undescribed biogenesis mechanisms, and are frequently located in the vicinity of protein‐coding genes. Altogether, our analysis suggests that these 38 loci represent one or more undescribed types ofsRNA inArabidopsis thaliana . -
Summary The altered carbon assimilation pathway of crassulacean acid metabolism (
CAM ) photosynthesis results in an up to 80% higher water‐use efficiency than C3photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA ) expression patterns in the obligateCAM plant pineapple [Ananas comosus (L.) Merr.]. The high‐resolution transcriptome atlas allowed us to distinguish betweenCAM ‐related and non‐CAM gene copies. A differential gene co‐expression network across green and white leaf diel datasets identified genes with circadian oscillation,CAM ‐related functions, and source‐sink relations. Gene co‐expression clusters containingCAM pathway genes are enriched with clock‐associatedcis ‐elements, suggesting circadian regulation ofCAM . About 20% of pineapple microRNA s have diel expression patterns, with several that target keyCAM ‐related genes. Expression and physiology data provide a model forCAM ‐specific carbohydrate flux and long‐distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering ofCAM into C3photosynthesis crop species.