Incompletely isolated species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain distinct species in the face of ongoing gene flow. Here, we use field surveys and reduced representation sequencing to characterize the patterns of reproductive isolation, admixture and genomic divergence between populations of the outcrossing wildflower
Hybrid zones typically contain novel gene combinations that can be tested by natural selection in a unique genetic context. Parental haplotypes that increase fitness can introgress beyond the hybrid zone, into the range of parental species. We used the Affymetrix canine
- NSF-PAR ID:
- 10245979
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 25
- Issue:
- 11
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 2443-2453
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Mimulus guttatus and selfingM. nasutus . Focusing on a single site where these two species have come into secondary contact, we find that phenological isolation is strong, although incomplete, and is likely driven by divergence in response to photoperiod. In contrast to previous field studies, which have suggested that F1‐hybrid formation might be rare, we discover patterns of genomic variation consistent with ongoing introgression. Strikingly, admixed individuals vary continuously from highly admixed to nearly pureM. guttatus , demonstrating ongoing hybridization and asymmetric introgression fromM. nasutus intoM. guttatus . Patterns of admixture and divergence across the genome show that levels of introgression are more variable than expected by chance. Some genomic regions show a reduced introgression, including one region that overlaps a critical photoperiodQTL , whereas other regions show elevated levels of interspecific gene flow. In addition, we observe a genome‐wide negative relationship between absolute divergence and the local recombination rate, potentially indicating natural selection againstM. nasutus ancestry inM. guttatus genetic backgrounds. Together, our results suggest thatMimulus speciation is both ongoing and dynamic and that a combination of divergence in phenology and mating system, as well as selection against interspecific alleles, likely maintains these sympatric species. -
Coyotes are ubiquitous on the North American landscape as a result of their recent expansion across the continent. They have been documented in the heart of some of the most urbanized cities, such as Chicago, Los Angeles, and New York City. Here, we explored the genomic composition of 16 coyotes in the New York metropolitan area to investigate genomic demography and admixture for urban-dwelling canids in Queens County, New York. We identified moderate-to-high estimates of relatedness among coyotes living in Queens (r = 0.0–0.5) and adjacent neighborhoods, suggestive of a relatively small population. Although we found low background levels of domestic-dog ancestry across most coyotes in our sample (5%), we identified a male suspected to be a first-generation coyote–dog hybrid with 46% dog ancestry, as well as his two putative backcrossed offspring that carried approximately 25% dog ancestry. The male coyote–dog hybrid and one backcrossed offspring each carried two transposable element insertions that are associated with human-directed hypersociability in dogs and gray wolves. An additional, unrelated coyote with little dog ancestry also carried two of these insertions. These genetic patterns suggest that gene flow from domestic dogs may become an increasingly important consideration as coyotes continue to inhabit metropolitan regions.more » « less
-
Abstract Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (
Hirundo rustica ). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000SNP s to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwiseF STbetween subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies. -
Abstract A major goal of speciation research is to reveal the genomic signatures that accompany the speciation process. Genome scans are routinely used to explore genome‐wide variation and identify highly differentiated loci that may contribute to ecological divergence, but they do not incorporate spatial, phenotypic or environmental data that might enhance outlier detection. Geographic cline analysis provides a potential framework for integrating diverse forms of data in a spatially explicit framework, but has not been used to study genome‐wide patterns of divergence. Aided by a first‐draft genome assembly, we combined an
F CTscan and geographic cline analysis to characterize patterns of genome‐wide divergence between divergent pollination ecotypes ofMimulus aurantiacus .F CTanalysis of 58 872SNP s generated viaRAD ‐seq revealed little ecotypic differentiation (meanF CT = 0.041), although a small number of loci were moderately‐to‐highly diverged. Consistent with our previous results from the geneMaMyb2 , which contributes to differences in flower colour, 130 loci have cline shapes that recapitulate the spatial pattern of trait divergence, suggesting that they may reside in or near the genomic regions that contribute to pollinator isolation. In the narrow hybrid zone between the ecotypes, extensive admixture among individuals and low linkage disequilibrium between markers indicate that most outlier loci are scattered throughout the genome, rather than being restricted to one or a few divergent regions. In addition to revealing the genomic consequences of ecological divergence in this system, we discuss how geographic cline analysis is a powerful but under‐utilized framework for studying genome‐wide patterns of divergence. -
Abstract Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (
CDV ) in grizzly bears (Ursus arctos ) and wolves (Canis lupus ) of the Greater Yellowstone Ecosystem (GYE ). We hypothesized that grizzly bears may be more likely to be exposed toCDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state‐space models to infer the temporal dynamics ofCDV . These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three mainCDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed toCDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short.CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within theGYE carnivore community or is periodically reintroduced from distant regions with larger host populations.