skip to main content

Title: Biogeographic patterns of communities across diverse marine ecosystems in southern California

Integrating results from monitoring efforts conducted across diverse marine ecosystems provides opportunities to reveal novel biogeographic patterns at larger spatial scales and among multiple taxonomic groups. We investigated large‐scale patterns of community similarity across major taxonomic groups (invertebrates, fishes or algae) from a range of marine ecosystems (rocky intertidal, sandy intertidal, kelp forest, shallow and deep soft‐bottom subtidal) in southern California. Because monitoring sites and methods varied among programs, site data were averaged over larger geographic regions to facilitate comparisons. For the majority of individual community types, locations that were geographically near or environmentally similar to one another tended to have more similar communities. However, our analysis found that this pattern of within community type similarity did not result in all pairs of these community types exhibiting high levels of cross‐community congruence. Rocky intertidal algae communities had high levels of congruence with the spatial patterns observed for almost all of the other (fish or invertebrate) community types. This was not surprising given algal distributions are known to be highly influenced by bottom‐up factors and they are important as food and habitat for marine fishes and invertebrates. However, relatively few pairwise comparisons of the spatial patterns between a fish community and an invertebrate community yielded significant correlations. These community types are generally comprised of assemblages of higher trophic level species, and additional ecological and anthropogenic factors may have altered their spatial patterns of community similarity. In most cases pairs of invertebrate community types and pairs of fish community types exhibited similar spatial patterns, although there were some notable exceptions. These findings have important implications for the design and interpretation of results of long‐term monitoring programs.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Marine Ecology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Mesophotic ecosystems, found at the limit of light penetration in the ocean, are rich in biodiversity and harbour unique ecological communities. However, they remain among the least studied habitat zones on earth due to the high costs and technological limitations. Here, we characterize mesophotic communities in two marine reserves across a range of habitat types, depths and temperatures using submersible technologies, with the goal of understanding the processes that structure these communities across biogeographical regions.


    The Bay of La Paz and the Revillagigedo Archipelago, Mexico.


    Fish and algal species.


    We used a small and inexpensive remotely operated vehicle (ROV) to conduct roving‐swim surveys of major habitat types in depths from 12 to 94 m. With the resulting binary data on the presence of fish species, we used generalized linear mixed models and canonical correspondence analysis to determine whether biogenic habitat, depth and/or temperature best explained species richness and community structure across reef and non‐reef substrate.


    We identified 72 species or genera, including new depth records for nine fish species and a new geographical record for one fish species. Our surveys included large undocumented rhodolith beds (free‐living coralline algae) and mesophotic algal communities, in addition to diverse communities of soft corals and sponges. Fish species richness was positively associated with rocky substrate and warmer water, and reef fish communities differed significantly by depth, temperature and biogenic habitat.

    Main conclusion

    Our results highlight the importance of biogenic habitat in structuring communities across gradients of depth and temperature. We also demonstrate the effectiveness of a small and economical ROV for conducting mesophotic surveys in remote regions. Our methods and results provide a framework that can be used to greatly increase the biogeographical and taxonomic scope of mesophotic research, especially for readily identifiable taxa such as fish.

    more » « less
  2. Abstract

    Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.

    more » « less
  3. Abstract

    Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000–2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems.

    more » « less
  4. Abstract

    Research on intertidal community structure and recovery in the California Current System has largely focused on macrophytes and invertebrates occupying two‐dimensional, readily studied “open” rock surfaces. However, most rocky shores have a “third” dimension that includes channels, cracks, crevices, and overhangs whose organismal assemblages, termed “cryptic communities,” are poorly studied. Cryptic communities not only share many species with those on more accessible surfaces but also include high abundances of colonial invertebrates such as tunicates, sponges, bryozoans, and hydrozoans. We investigated species abundance and diversity of cryptic communities and tested their recovery from disturbance by comparing removal plots to undisturbed controls for ~1.5 years. Additionally, we tested whether community structure and recovery varied with contrasting large‐scale levels of ecological subsidies (invertebrate recruitment, nutrients, and phytoplankton) and local‐scale microhabitat differences (emersion and solar irradiation) on the Oregon Coast. We compared cryptic recovery rates to recovery rates on open‐surface communities. In cryptic communities, site explained most (92%) variance in community structure of undisturbed plots, while microhabitat metrics had little (1.2%) effect. Further, recovery rates were faster at a site with higher subsidy inputs than one with lower subsidies in both cryptic and noncryptic communities. Hence, larger scale environmental drivers appeared more important than local‐scale drivers within cryptic communities. Our research provides novel insight into intertidal cryptic surge channel community structure and dynamics.

    more » « less
  5. Abstract

    The hypothesis that biotic interactions are stronger at lower relative to higher latitudes has a rich history, drawing from ecological and evolutionary theory. While this hypothesis suggests that stronger interactions at lower latitudes may contribute to the maintenance of contemporary patterns of diversity, there remain few standardized biogeographic comparisons of community effects of species interactions.

    Using marine seagrasses as a focal ecosystem of conservation importance and sessile marine invertebrates as model prey, we tested the hypothesis that predation is stronger at lower latitudes and can shape contemporary patterns of prey diversity. To further advance understanding beyond prior studies, we also explored mechanisms that likely underlie a change in interaction outcomes with latitude.

    Multiple observational and experimental approaches were employed to test for effects of predators, and the mechanisms that may underlie these effects, in seagrass ecosystems of the western Atlantic Ocean spanning 30° of latitude from the temperate zone to the tropics.

    In predator exclusion experiments conducted in a temperate and a tropical region, predation decreased sessile invertebrate abundance, richness and diversity on both natural and standardized artificial seagrass at tropical but not temperate sites. Further, predation reduced invertebrate richness at both local and regional scales in the tropics. Additional experiments demonstrated that predation reduced invertebrate recruitment in the tropics but not the temperate zone. Finally, direct observations of predators showed higher but variable consumption rates on invertebrates at tropical relative to temperate latitudes.

    Together, these results demonstrate that strong predation in the tropics can have consequential impacts on prey communities through discrete effects on early life stages as well as longer‐term cumulative effects on community structure and diversity. Our detailed experiments also provide some of the first data linking large‐scale biogeographic patterns, community‐scale interaction outcomes and direct observation of predators in the temperate zone and tropics. Therefore, our results support the hypothesis that predation is stronger in the tropics, but also elucidate some of the causes and consequences of this variation in shaping contemporary patterns of diversity.

    more » « less