skip to main content


Title: Biogeographic patterns of communities across diverse marine ecosystems in southern California
Abstract

Integrating results from monitoring efforts conducted across diverse marine ecosystems provides opportunities to reveal novel biogeographic patterns at larger spatial scales and among multiple taxonomic groups. We investigated large‐scale patterns of community similarity across major taxonomic groups (invertebrates, fishes or algae) from a range of marine ecosystems (rocky intertidal, sandy intertidal, kelp forest, shallow and deep soft‐bottom subtidal) in southern California. Because monitoring sites and methods varied among programs, site data were averaged over larger geographic regions to facilitate comparisons. For the majority of individual community types, locations that were geographically near or environmentally similar to one another tended to have more similar communities. However, our analysis found that this pattern of within community type similarity did not result in all pairs of these community types exhibiting high levels of cross‐community congruence. Rocky intertidal algae communities had high levels of congruence with the spatial patterns observed for almost all of the other (fish or invertebrate) community types. This was not surprising given algal distributions are known to be highly influenced by bottom‐up factors and they are important as food and habitat for marine fishes and invertebrates. However, relatively few pairwise comparisons of the spatial patterns between a fish community and an invertebrate community yielded significant correlations. These community types are generally comprised of assemblages of higher trophic level species, and additional ecological and anthropogenic factors may have altered their spatial patterns of community similarity. In most cases pairs of invertebrate community types and pairs of fish community types exhibited similar spatial patterns, although there were some notable exceptions. These findings have important implications for the design and interpretation of results of long‐term monitoring programs.

 
more » « less
NSF-PAR ID:
10246110
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Marine Ecology
Volume:
39
Issue:
S1
ISSN:
0173-9565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Top‐down and bottom‐up factors and their interaction highlight the interdependence of resources and consumer impacts on food webs and ecosystems. Variation in the strength of upwelling‐mediated ecological controls (i.e., light availability and herbivory) between early and late succession stages is less well understood from the standpoint of influencing algal functional group composition. We experimentally tested the effect of light, grazing, and disturbance on rocky intertidal turf‐forming algal communities. Studies were conducted on the South Island of New Zealand at Raramai on the east coast (a persistent downwelling region) and Twelve Mile Beach on the west coast (an intermittent upwelling region). Herbivory, light availability, and algal cover were manipulated and percent cover of major macroalgal functional groups and sessile invertebrates were measured monthly from October 2017 to March 2018. By distinguishing between algal functional groups and including different starting conditions in our design, we found that the mosaic‐like pattern of bare rock intermingled with diverse turf‐forming algae at Twelve Mile Beach was driven by a complex array of species interactions, including grazing, predation, preemptive competition and interference competition, colonization rates, and these interactions were modulated by light availability and other environmental conditions. Raramai results contrasted with those at Twelve Mile Beach in showing stronger effects of grazing and relatively weak effects of other interactions, low colonization rates of invertebrates, and light effects limited to crustose algae. Our study highlights the potential importance of an upwelling‐mediated 3‐way interaction among herbivory, light availability, and preemption in structuring contrasting low rocky intertidal macroalgal communities.

     
    more » « less
  2. Abstract Aim

    Mesophotic ecosystems, found at the limit of light penetration in the ocean, are rich in biodiversity and harbour unique ecological communities. However, they remain among the least studied habitat zones on earth due to the high costs and technological limitations. Here, we characterize mesophotic communities in two marine reserves across a range of habitat types, depths and temperatures using submersible technologies, with the goal of understanding the processes that structure these communities across biogeographical regions.

    Location

    The Bay of La Paz and the Revillagigedo Archipelago, Mexico.

    Taxa

    Fish and algal species.

    Methods

    We used a small and inexpensive remotely operated vehicle (ROV) to conduct roving‐swim surveys of major habitat types in depths from 12 to 94 m. With the resulting binary data on the presence of fish species, we used generalized linear mixed models and canonical correspondence analysis to determine whether biogenic habitat, depth and/or temperature best explained species richness and community structure across reef and non‐reef substrate.

    Results

    We identified 72 species or genera, including new depth records for nine fish species and a new geographical record for one fish species. Our surveys included large undocumented rhodolith beds (free‐living coralline algae) and mesophotic algal communities, in addition to diverse communities of soft corals and sponges. Fish species richness was positively associated with rocky substrate and warmer water, and reef fish communities differed significantly by depth, temperature and biogenic habitat.

    Main conclusion

    Our results highlight the importance of biogenic habitat in structuring communities across gradients of depth and temperature. We also demonstrate the effectiveness of a small and economical ROV for conducting mesophotic surveys in remote regions. Our methods and results provide a framework that can be used to greatly increase the biogeographical and taxonomic scope of mesophotic research, especially for readily identifiable taxa such as fish.

     
    more » « less
  3. Abstract

    During a cold La Niña period (August 2007–January 2008) in the central Galápagos archipelago, 70% ofPocilloporabranching corals were severely bleached across three long‐term monitoring sites, affording an opportunity to examine its impact on the persistence of these corals and their associated community of fish and mobile macroinvertebrates. Using a time series empirical approach, we tagged and tracked the fate of 96 coral heads and their associates. When surveyed in July 2008, recovered live and dead corals that were previously severely bleached supported similar levels of species richness (randomized observed and estimated Chao 1). By contrast, richness on the surviving live corals remained fairly stable, while Chao 1 estimated richness on dead corals underwent a nearly 50% increase between July and January 2009, thereafter declining to 50% of originally surveyed richness by February 2010. This nonlinear change in species richness was largely due to an influx and decline in opportunistic generalists including pencil urchin bioeroders, gastropod snails, and hermit crabs that colonized dead corals and fed on sessile invertebrates and algae that had initially recruited to dead and undefended coral substrate. Thus, dead corals retained high overall species richness until live corals had recovered, after which richness declined as dead corals eroded and disintegrated (July 2011). Live corals attracted a less speciose but stable assemblage of mutualistic xanthid crabs and fishes that increased in abundance over time with the recovery and growth of live coral tissue. Overall, coral status (live/dead), planar area and maximum branch length predicted the number of species associated with each colony. The delayed diversity loss of associated species following La Niña disturbance to a foundation species represents a local extinction debt of 32–49‐month duration. A better understanding of the scale of extinction debt in foundational marine ecosystems is needed to quantify the breadth of impacts of climate oscillations on biodiversity and ecosystem functioning.

     
    more » « less
  4. Abstract Aim

    Although species richness globally is likely to be declining, patterns in diversity at the regional scale depend on species gains within new habitats and species losses from previously inhabited areas. Our understanding of the processes associated with gains or losses remains poor, including whether these events exhibit immediate or delayed responses to environmental change.

    Location

    The study focuses on nine temperate marine ecosystems in North America.

    Time period

    The study period varies by region, but overall encompasses observations from 1970 to 2014.

    Major taxa studied

    We identified regional gains and losses for 577 marine fish and invertebrate species.

    Methods

    From a total of 166,213 sampling events from bottom trawls across North America that informed 17,997 independent observations of species gains and losses, we built generalized linear mixed effects models to test whether lagged temperature can explain instances of gains and losses of marine fishes and invertebrates in North American continental shelf habitats.

    Results

    We found that gains were less likely in years with high seasonality, consistent with seasonal extremes as a strong constraint on species occurrence. Losses were also negatively associated with high seasonality, but the response was delayed by 3 years.

    Main conclusions

    Environmental conditions play a role in species occupancy across diverse temperate marine ecosystems. Immediate gains paired with delayed losses can drive transient increases in species richness during times of environmental change. Identifying the dynamics behind regional species gains and losses is an important step towards prediction of biodiversity changes across ecosystems.

     
    more » « less
  5. Abstract

    Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no‐take state marine reserves, and 76 partial‐take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no‐take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat‐wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem‐wide consequences resulting from acute climate‐driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.

     
    more » « less