Climate change has influenced species distributions worldwide with upward elevational shifts observed in many systems. Leading range edge populations, like those at upper elevation limits, are crucial for climate change responses but can exhibit low genetic diversity due to founder effects, isolation, or limited outbreeding. These factors can hamper local adaptation at range limits. Using the widespread herb,
Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant,
- PAR ID:
- 10246176
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 25
- Issue:
- 4
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 911-928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Argentina anserina , we measured ecological attributes (population density on the landscape, area of population occupancy, and plant and flower density) spanning a 1000 m elevation gradient, with high elevation populations at the range limit. We measured vegetative clonal potential in the greenhouse for populations spanning the gradient. We combined these data with a ddRAD-seq dataset to test the hypotheses that high elevation populations would exhibit ecological and genomic signatures of leading range edge populations. We found that population density on the landscape declined towards the high elevation limit, as is expected towards range edges. However, plant density was elevated within edge populations. In the greenhouse, high elevation plants exhibited stronger clonal potential than low elevation plants, likely explaining increased plant density in the field. Phylogeographic analysis supported more recent colonization of high elevation populations which were also more genetically isolated, had more extreme heterozygote excess and had smaller effective population size than low. Results support that colonization of high elevations was likely accompanied by increased asexuality, contributing to a decline in effective population size. Despite high plant density in leading edge populations, their small effective size, isolation and clonality could constrain adaptive potential. -
Abstract Understanding mechanisms that underlie species range limits is at the core of evolutionary ecology. Asymmetric gene flow between larger core populations and smaller edge populations can swamp local adaptation at the range edge and inhibit further range expansion. However, empirical tests of this theory are exceedingly rare. We tested the hypothesis that asymmetric gene flow can constrain local adaptation and thereby species’ range limits in an endemic US salamander (
Ambystoma barbouri ) by determining if gene flow is asymmetric between the core and peripheries of the species’ geographic distribution and testing whether local adaptation is swamped at range edges with a reciprocal transplant experiment. Using putatively neutral loci from populations across three core‐to‐edge transects that covered nearly the entire species’ geographic range, we found evidence for asymmetric, core‐to‐edge gene flow along western and northern transects, but not along a southern transect. Subsequently, the reciprocal transplant experiment suggested that northern and western edge populations are locally adapted despite experiencing asymmetric gene flow, yet have lower fitness in their respective home regions than those of centre population. Conversely, southern populations exhibit low deme quality, experiencing high mortality regardless of where they were reared, probably due to harsher edge habitat conditions. Consequently, we provide rare species‐wide evidence that local adaptation can occur despite asymmetric gene flow, though migration from the core may prohibit range expansion by reducing fitness in edge populations. Further, our multitransect study shows that multiple, nonmutually exclusive mechanisms can lead to range limits within a single species. -
Abstract Aim Patterns of genetic diversity within species’ ranges can reveal important insights into effects of past climate on species’ biogeography and current population dynamics. While numerous biogeographic hypotheses have been proposed to explain patterns of genetic diversity within species’ ranges, formal comparisons and rigorous statistical tests of these hypotheses remain rare. Here, we compared seven hypotheses for their abilities to describe the geographic pattern of two metrics of genetic diversity in balsam poplar (
Populus balsamifera ), a northern North American tree species.Location North America.
Taxon Balsam poplar (
Populus balsamifera L.).Methods We compared seven hypotheses, representing effects of past climate and current range position, for their ability to describe the geographic pattern of expected heterozygosity and per cent polymorphic loci across 85 populations of balsam poplar. We tested each hypothesis using spatial and non‐spatial least‐squares regression to assess the importance of spatial autocorrelation on model performance.
Results We found that both expected heterozygosity and per cent polymorphic loci could best be explained by the current range position and genetic structure of populations within the contemporary range. Genetic diversity showed a clear gradient of being highest near the geographic and climatic range centre and lowest near range edges. Hypotheses accounting for the effects of past climate (e.g. past climatic suitability, distance from the southern edge), in contrast, had comparatively little support. Model ranks were similar among spatial and non‐spatial models, but residuals of all non‐spatial models were significantly autocorrelated, violating the assumption of independence in least‐squares regression.
Main conclusions Our work adds strong support for the “Central‐Periphery Hypothesis” as providing a predictive framework for understanding the forces structuring genetic diversity across species’ ranges, and illustrates the value of applying a robust comparative model selection framework and accounting for spatial autocorrelation when comparing biogeographic models of genetic diversity.
-
Abstract Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site‐associated
DNA sequencing (RAD seq) in two bumble bee species,Bombus vosnesenskii andBombus bifarius, across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A.Bombus vosnesenskii , which occurs across a broader elevational range at most latitudes, exhibits little population structure whileB. bifarius , which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, withB. vosnesenskii exhibiting relatively consistent levels of genetic diversity across its range, whileB. bifarius has reduced genetic diversity at low latitudes, where it is restricted to high‐elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems. -
Abstract Species inhabiting marine environments face a wide range of environmental conditions that vary spatially across several orders of magnitude. The selective pressures that these conditions impose on marine organisms, in combination with potentially high rates of gene flow between distant populations, make it difficult to predict the extent to which these populations can locally adapt. Here, I identify how selection and gene flow influence the population genetic structure of the anemone
Anthopleura elegantissima along the Pacific coast of North America. Isolation by distance is the dominant pattern across the range of this species, with a genetic break near Pt. Conception, CA. Furthermore, demographic modelling suggests that this species was historically confined to southerly latitudes before expanding northward. Outlier analyses identify 24 loci under selection (out of ~1,100), but the same analysis on simulated genetic data generated using the most likely demographic model erroneously identified the same number of loci under selection, if not more. Taken together, these results suggest that demographic processes are the dominant force shaping population genetic patterns inA. elegantissima along the Pacific coast of North America. I discuss these patterns in terms of the evolutionary history ofA. elegantissima , the potential for local adaptation, and their consequences with respect to interactions with the endosymbiontBreviolum muscatinei across their geographic range.