skip to main content


Title: Assessing the factors influencing natural regeneration patterns in the diverse, multi‐cohort, and managed forests of Maine, USA
Abstract Questions

What are the primary biotic and abiotic factors driving composition and abundance of naturally regenerated tree seedlings across forest landscapes of Maine? Do seedling species richness (SR) and density (SD) decrease with improved growing conditions (climate and soil), but increase with increased diversity of overstorey composition and structure? Does partial harvesting disproportionately favour relative dominance of shade‐intolerant hardwoods (PIHD) over shade‐tolerant softwoods (PTSD)?

Location

Forest landscapes across the diverse eco‐regions and forest types of Maine,USA.

Methods

This study usedUSDAForest Service Forest Inventory Analysis permanent plots (n = 10 842), measured every 5 yr since 1999. The best models for each response variable (SR,SD,PIHDandPTSD) were developed based onAICand biological interpretability, while considering 35 potential explanatory variables incorporating climate, soil, site productivity, overstorey structure and composition, and past harvesting.

Results

Mean annual temperature was the most important abiotic factor, whereas overstorey tree size diversity was the most important biotic factor forSRandSD. Both mean annual temperature and overstorey tree size diversity had a curvilinear relationship withSRandSD. Average overstorey shade tolerance and percentage tolerant softwood basal area in the overstorey were the top predictor variables ofPIHDandPTSD,respectively. Partial harvesting favouredPIHDbut notPTSD.

Conclusions

This is one of the first studies to comprehensively evaluate a number of factors influencing naturally established tree seedlings at a broad landscape scale in the Northern Forest region of the easternUSAand Canada. Despite limitations associated with relatively small plot size, large seedling size class and lack of direct measurements of light, water and nutrients, this study documents the influence of these factors amid high variability associated with patterns of natural regeneration. The curvilinear relationship between mean annual temperature withSRandSDsupports the argument that species richness and abundance usually have unimodal relationships with productivity indicators, whereas the curvilinear relationship between overstorey tree size diversity andSRandSDsuggest that moderate overstorey diversity incorporates multiple species as well as higher seedling individuals.

 
more » « less
NSF-PAR ID:
10246523
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Vegetation Science
Volume:
27
Issue:
6
ISSN:
1100-9233
Page Range / eLocation ID:
p. 1140-1150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems wereEMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.

     
    more » « less
  2. Summary

    Successive droughts have resulted in extensive tree mortality in the southwestern United States. Recovery of these areas is dependent on the survival and recruitment of young trees. For trees that rely on ectomycorrhizal fungi (EMF) for survival and growth, changes in soil fungal communities following tree mortality could negatively affect seedling establishment.

    We used tree‐focused and stand‐scale measurements to examine the impact of pinyon pine mortality on the performance of surviving juvenile trees and the potential for mutualism limitation of seedling establishment via alteredEMFcommunities.

    Mature pinyon mortality did not affect the survival of juvenile pinyons, but increased their growth. At both tree and stand scales, high pinyon mortality had no effect on the abundance ofEMFinocula, but led to alteredEMFcommunity composition including increased abundance ofGeoporaand reduced abundance ofTuber. Seedling biomass was strongly positively associated withTuberabundance, suggesting that reductions in this genus with pinyon mortality could have negative consequences for establishing seedlings.

    These findings suggest that whereas mature pinyon mortality led to competitive release for established juvenile pinyons, changes inEMFcommunity composition with mortality could limit successful seedling establishment and growth in high‐mortality sites.

     
    more » « less
  3. Abstract Aims

    Bryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes.

    Study Site

    Spruce–fir forests on Whiteface Mountain, NY,USA.

    Methods

    We characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression.

    Results

    Canopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients.

    Conclusions

    The observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities.

     
    more » « less
  4. Abstract

    In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northernRockyMountains of theU.S. andCanada,Pinus albicaulis, a stress‐tolerant pine, initiates tree islands at higher frequencies than other conifers – that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated)P. albicaulisleading to tree island initiation may be important for different life‐history stages for leeward conifers, but it is not known which life‐history stages are influenced and protection provided. However,P. albicaulismortality from the non‐native pathogenCronartium ribicolapotentially disrupts these facilitative interactions, reducing tree island initiation. In twoRockyMountain eastern slope study areas, we experimentally examined fundamental plant–plant interactions which might facilitate tree island formation: the protection offered byP. albicaulisto leeward seed and seedling life‐history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality fromC. ribicolafor windwardP. albicaulisto determine whether loss ofP. albicaulisfromC. ribicolaimpacts leeward conifers. Relative to other common solitary conifers at treeline, solitaryP. albicaulishad higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest inP. albicaulismicrosites. Planted seedling survival was low among all microsites examined. Simulating death of windwardP. albicaulisbyC. ribicolareduced shoot growth of leeward trees. Loss ofP. albicaulisto exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms.

     
    more » « less
  5. Abstract Aim

    To test the importance of alternative diversification drivers and biogeographical processes for the evolution of Amazonian upland forest birds through a densely sampled analysis of diversification of the endemic Amazonian genusRhegmatorhinaat multiple taxonomic and temporal scales.

    Location

    Amazonia.

    Taxon

    Antbirds (Thamnophilidae).

    Methods

    We sequenced four mtDNAand nuclear gene regions of 120 individuals from 50 localities representing all recognized species and subspecies of the genus. We performed molecular phylogenetic analyses using both gene tree and species tree methods, molecular dating analysis and estimated population demographic history and gene flow.

    Results

    Dense sampling throughout the distribution ofRhegmatorhinarevealed that the main Amazonian rivers delimit the geographic distribution of taxa as inferred from mtDNAlineages. Molecular phylogenetic analyses resulted in a strongly supported phylogenetic hypothesis for the genus, with two main clades currently separated by the Madeira River. Molecular dating analysis indicated diversification during the Quaternary. Reconstruction of recent demographic history of populations revealed a trend for population expansion in eastern Amazonia and stability in the west. Estimates of gene flow corroborate the possibility that migration after divergence had some influence on the current patterns of diversity.

    Main Conclusions

    Based on broad‐scale sampling, a clarification of taxonomic boundaries, and strongly supported phylogenetic relationships, we confirm that, first, mitochondrial lineages within this upland forest Amazonian bird genus agree with spatial patterns known for decades based on phenotypes, and second, that most lineages are geographically delimited by the large Amazonian rivers. The association between past demographic changes related to palaeoclimatic cycles and the historically varying strength and size of rivers as barriers to dispersal may be the path to the answer to the long‐standing question of identifying the main drivers of Amazonian diversification.

     
    more » « less