skip to main content


Title: Genome divergence and diversification within a geographic mosaic of coevolution
Abstract

Despite substantial interest in coevolution's role in diversification, examples of coevolution contributing to speciation have been elusive. Here, we build upon past studies that have shown both coevolution between South Hills crossbills and lodgepole pine (Pinus contorta), and high levels of reproductive isolation between South Hills crossbills and other ecotypes in the North American red crossbill (Loxia curvirostra) complex. We used genotyping by sequencing to generate population genomic data and applied phylogenetic and population genetic analyses to characterize the genetic structure within and among nine of the ecotypes. Although genome‐wide divergence was slight between ecotypes (FST = 0.011–0.035), we found evidence of relative genetic differentiation (as measured byFST) between and genetic cohesiveness within many of them. As expected for nomadic and opportunistic breeders, we detected no evidence of isolation by distance. The one sedentary ecotype, the South Hills crossbill, was genetically most distinct because of elevated divergence at a small number of loci rather than pronounced overall genome‐wide divergence. These findings suggest that mechanisms related to recent local coevolution between South Hills crossbills and lodgepole pine (e.g. strong resource‐based density dependence limiting gene flow) have been associated with genome divergence in the face of gene flow. Our results further characterize a striking example of coevolution driving speciation within perhaps as little as 6000 years.

 
more » « less
NSF-PAR ID:
10246880
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
25
Issue:
22
ISSN:
0962-1083
Page Range / eLocation ID:
p. 5705-5718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A major goal of speciation research is to reveal the genomic signatures that accompany the speciation process. Genome scans are routinely used to explore genome‐wide variation and identify highly differentiated loci that may contribute to ecological divergence, but they do not incorporate spatial, phenotypic or environmental data that might enhance outlier detection. Geographic cline analysis provides a potential framework for integrating diverse forms of data in a spatially explicit framework, but has not been used to study genome‐wide patterns of divergence. Aided by a first‐draft genome assembly, we combined anFCTscan and geographic cline analysis to characterize patterns of genome‐wide divergence between divergent pollination ecotypes ofMimulus aurantiacus.FCTanalysis of 58 872SNPs generated viaRAD‐seq revealed little ecotypic differentiation (meanFCT = 0.041), although a small number of loci were moderately‐to‐highly diverged. Consistent with our previous results from the geneMaMyb2, which contributes to differences in flower colour, 130 loci have cline shapes that recapitulate the spatial pattern of trait divergence, suggesting that they may reside in or near the genomic regions that contribute to pollinator isolation. In the narrow hybrid zone between the ecotypes, extensive admixture among individuals and low linkage disequilibrium between markers indicate that most outlier loci are scattered throughout the genome, rather than being restricted to one or a few divergent regions. In addition to revealing the genomic consequences of ecological divergence in this system, we discuss how geographic cline analysis is a powerful but under‐utilized framework for studying genome‐wide patterns of divergence.

     
    more » « less
  2. Abstract

    Incompletely isolated species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain distinct species in the face of ongoing gene flow. Here, we use field surveys and reduced representation sequencing to characterize the patterns of reproductive isolation, admixture and genomic divergence between populations of the outcrossing wildflowerMimulus guttatusand selfingM. nasutus. Focusing on a single site where these two species have come into secondary contact, we find that phenological isolation is strong, although incomplete, and is likely driven by divergence in response to photoperiod. In contrast to previous field studies, which have suggested that F1‐hybrid formation might be rare, we discover patterns of genomic variation consistent with ongoing introgression. Strikingly, admixed individuals vary continuously from highly admixed to nearly pureM. guttatus, demonstrating ongoing hybridization and asymmetric introgression fromM. nasutusintoM. guttatus. Patterns of admixture and divergence across the genome show that levels of introgression are more variable than expected by chance. Some genomic regions show a reduced introgression, including one region that overlaps a critical photoperiodQTL, whereas other regions show elevated levels of interspecific gene flow. In addition, we observe a genome‐wide negative relationship between absolute divergence and the local recombination rate, potentially indicating natural selection againstM. nasutusancestry inM. guttatusgenetic backgrounds. Together, our results suggest thatMimulusspeciation is both ongoing and dynamic and that a combination of divergence in phenology and mating system, as well as selection against interspecific alleles, likely maintains these sympatric species.

     
    more » « less
  3. Abstract

    Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remainingV. variegatarange. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNAsequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of theMangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNAhaplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high averageFST(0.247) and ΦST(0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.

     
    more » « less
  4. Abstract

    Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwiseFSTbetween subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.

     
    more » « less
  5. Abstract

    The paleback darter,Etheostoma pallididorsum, is considered imperilled and has recently been petitioned for listing under the Endangered Species Act. Previous allozyme‐based studies found evidence of a small effective population size, warranting conservation concern. The objective of this study was to assess the population dynamics and the phylogeographical history of the paleback darter, using a multilocus microsatellite approach and mitochondrial DNA.

    The predictions of this study were that: paleback darter populations will exhibit low genetic diversity and minimal gene flow; population structure will correspond to the river systems from which the samples are derived; reservoir dams impounding the reaches between the Caddo and Ouachita rivers would serve as effective barriers to gene flow; and the Caddo and Ouachita rivers are reciprocally monophyletic.

    Microsatellite DNA loci revealed significant structure among sampled localities (globalFst= 0.17,P< 0.001), with evidence of two distinct populations representing the Caddo and Ouachita rivers. However, Bayesian phylogeographical analyses resulted in three distinct clades: Caddo River, Ouachita River, and Mazarn Creek. Divergence from the most recent ancestor shared among the river drainages was estimated at 60 Kya. Population genetic diversity was relatively low (He= 0.65; mean alleles per locus,A= 6.26), but was comparable with the population genetic diversity found in the close relatives slackwater darter,Etheostoma boschungi(He= 0.65;A= 6.74), and Tuscumbia darter,Etheostoma tuscumbia(He= 0.57;A= 5.53).

    These results have conservation implications for paleback darter populations and can be informative for other headwater specialist species. Like other headwater species with population structuring and relatively low genetic diversity, the persistence of paleback darter populations is likely to be tied to the persistence and connectivity of local breeding and non‐breeding habitat. These results do not raise conservation concern for a population decline; however, the restricted distribution and endemic status of the species still renders paleback darter populations vulnerable to extirpation or extinction.

     
    more » « less