skip to main content


Title: Neogene sloth assemblages ( M ammalia, P ilosa) of the C ocinetas B asin ( L a G uajira, C olombia): implications for the G reat A merican B iotic I nterchange
Abstract

We describe sloth assemblages from theCocinetasBasin (LaGuajira peninsula,Colombia), found in theNeogeneCastilletes andWare formations, located in northernmostSouthAmerica, documenting otherwise poorly known biotas. The tentative referral of a specimen to a small megatherioid sloth,Hyperleptus?, from the early–middleMioceneCastilletesFormation, suggests affinities of this fauna with the distantSantaCruzFormation and documents a large latitudinal distribution for this taxon. The latePlioceneWareFormation is much more diverse, with five distinct taxa representing every family of ‘ground sloths’. This diversity is also remarkable at the ecological level, with sloths spanning over two orders of magnitude of body mass and probably having different feeding strategies. Being only a few hundred kilometres away from theIsthmus ofPanama, and a few hundred thousand years older than the classically recognized first main pulse of theGreatAmericanBiotic interchange (GABI1), theWareFormation furthermore documents an important fauna for the understanding of this major event inNeogene palaeobiogeography. The sloths for which unambiguous affinities were recovered are not closely related to the early immigrants found inNorthAmerica beforeGABI1.

 
more » « less
NSF-PAR ID:
10247050
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Palaeontology
Volume:
59
Issue:
4
ISSN:
0031-0239
Format(s):
Medium: X Size: p. 563-582
Size(s):
["p. 563-582"]
Sponsoring Org:
National Science Foundation
More Like this
  1. A s a c om pl e men t t o da ta d edupli cat ion , de lta c om p ress i on fu r- t he r r edu c es t h e dat a vo l u m e by c o m pr e ssi n g n o n - dup li c a t e d ata chunk s r e l a t iv e to t h e i r s i m il a r chunk s (bas e chunk s). H ow ever, ex is t i n g p o s t - d e dup li c a t i o n d e l t a c o m pr e ssi o n a p- p ro a ches fo r bac kup s t or ag e e i t h e r su ffe r f ro m t h e l ow s i m - il a r i t y b e twee n m any de te c ted c hun ks o r m i ss so me po t e n - t i a l s i m il a r c hunks , o r su ffer f r om l ow (ba ckup and r es t ore ) th r oug hpu t du e t o extr a I/ Os f or r e a d i n g b a se c hun ks o r a dd a dd i t i on a l s e r v i c e - d i s r up t ive op e r a t i on s to b a ck up s ys t em s. I n t h i s pa p e r, w e pr opo se L oop D e l t a t o a dd ress the above - m e n t i on e d prob l e m s by an e nha nced em b e ddi n g d e l t a c o m p - r e ss i on sc heme i n d e dup li c a t i on i n a non - i n t ru s ive way. T h e e nha nce d d elt a c o mpr ess ion s che m e co m b in e s f our key t e c h - ni qu e s : (1) du a l - l o c a li t y - b a s e d s i m il a r i t y t r a c k i n g to d e t ect po t e n t i a l si m il a r chun k s b y e x p l o i t i n g both l o g i c a l and ph y - s i c a l l o c a li t y, ( 2 ) l o c a li t y - a wa r e pr e f e t c h i n g to pr efe tc h ba se c hun ks to a vo i d ex t ra I/ Os fo r r e a d i n g ba s e chun ks on t h e w r i t e p at h , (3) c a che -aware fil t e r to avo i d ext r a I/Os f or b a se c hunk s on t he read p at h, a nd (4) i nver sed de l ta co mpressi on t o perf orm de lt a co mpress i o n fo r d at a chunk s t hat a re o th e r wi se f o r b i dd e n to s er ve as ba se c hunk s by r ew r i t i n g t e c hn i qu e s d e s i g n e d t o i m p r ove r es t o re pe rf o rma nc e. E x p e r i m e n t a l re su lts indi ca te t hat L oop D e l t a i ncr ea se s t he c o m pr e ss i o n r a t i o by 1 .2410 .97 t i m e s on t op of d e dup li c a - t i on , wi t hou t no t a b l y a ffe c t i n g th e ba ck up th rou ghpu t, a nd i t i m p r ove s t he res to re p er fo r m an ce b y 1.23.57 t i m e 
    more » « less
  2. Summary

    The GreenCut encompasses a suite of nucleus‐encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non‐photosynthetic/heterotrophic organisms. InChlamydomonas reinhardtii,CPLD49 (Conserved inPlantLineage andDiatoms49) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that acpld49mutant has impaired photoautotrophic growth under high‐light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochromeb6fcomplex (Cytb6f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore,CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein,CPLD38; a mutant null forCPLD38 also impacts Cytb6fcomplex accumulation. We investigated several potential functions ofCPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis thatCPLD38 andCPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6fcomplex. Based on motifs ofCPLD49 and the activities of otherCPLD49‐like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6f.

     
    more » « less
  3. Summary

    Actin filament assembly in plants is a dynamic process, requiring the activity of more than 75 actin‐binding proteins. Central to the regulation of filament assembly and stability is the activity of a conserved family of actin‐depolymerizing factors (ADFs), whose primarily function is to regulate the severing and depolymerization of actin filaments. In recent years, the activity ofADFproteins has been linked to a variety of cellular processes, including those associated with response to stress. Herein, a wheatADFgene,TaADF4,was identified and characterized.TaADF4encodes a 139‐amino‐acid protein containing five F‐actin‐binding sites and two G‐actin‐binding sites, and interacts with wheat (Triticum aestivum) Actin1 (TaACT1),in planta. Following treatment of wheat, separately, with jasmonic acid, abscisic acid or with the avirulent race,CYR23, of the stripe rust pathogenPuccinia striiformisf. sp.tritici, we observed a rapid induction in accumulation ofTaADF4mRNA. Interestingly, accumulation ofTaADF4mRNAwas diminished in response to inoculation with a virulent race,CYR31. Silencing ofTaADF4resulted in enhanced susceptibility toCYR23, demonstrating a role forTaADF4in defense signaling. Using a pharmacological‐based approach, coupled with an analysis of host response to pathogen infection, we observed that treatment of plants with the actin‐modifying agent latrunculin B enhanced resistance toCYR23, including increased production of reactive oxygen species and enhancement of localized hypersensitive cell death. Taken together, these data support the hypothesis thatTaADF4 positively modulates plant immunity in wheat via the modulation of actin cytoskeletal organization.

     
    more » « less
  4. <bold>Summary</bold>

    Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production.

     
    more » « less
  5. Abstract

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field‐based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field‐based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat‐specific dispersal rates and characterize habitat quality in two‐toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field‐based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture–forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated usingABCprocedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower‐quality habitat than pasture–forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field‐based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes.

     
    more » « less