skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Cranial joint histology in the mallard duck ( Anas platyrhynchos ): new insights on avian cranial kinesis
Abstract

The evolution of avian cranial kinesis is a phenomenon in part responsible for the remarkable diversity of avian feeding adaptations observable today. Although osteological, developmental and behavioral features of the feeding system are frequently studied, comparatively little is known about cranial joint skeletal tissue composition and morphology from a microscopic perspective. These data are key to understanding the developmental, biomechanical and evolutionary underpinnings of kinesis. Therefore, here we investigated joint microstructure in juvenile and adult mallard ducks (Anas platyrhynchos; Anseriformes). Ducks belong to a diverse clade of galloanseriform birds, have derived adaptations for herbivory and kinesis, and are model organisms in developmental biology. Thus, new insights into their cranial functional morphology will refine our understanding of avian cranial evolution. A total of five specimens (two ducklings and three adults) were histologically sampled, and two additional specimens (a duckling and an adult) were subjected to micro‐computed tomographic scanning. Five intracranial joints were sampled: the jaw joint (quadrate‐articular); otic joint (quadrate‐squamosal); palatobasal joint (parasphenoid‐pterygoid); the mandibular symphysis (dentary‐dentary); and the craniofacial hinge (a complex flexion zone involving four different pairs of skeletal elements). In both the ducklings and adults, the jaw, otic and palatobasal joints are all synovial, with a synovial cavity and articular cartilage on each surface (i.e. bichondral joints) ensheathed in a fibrous capsule. The craniofacial hinge begins as an ensemble of patent sutures in the duckling, but in the adult it becomes more complex: laterally it is synovial; whereas medially, it is synostosed by a bridge of chondroid bone. We hypothesize that it is chondroid bone that provides some of the flexible properties of this joint. The heavily innervated mandibular symphysis is already fused in the ducklings and remains as such in the adult. The results of this study will serve as reference for documenting avian cranial kinesis from a microanatomical perspective. The formation of: (i) secondary articular cartilage on the membrane bones of extant birds; and (ii) their unique ability to form movable synovial joints within two or more membrane bones (i.e. within their dermatocranium) might have played a role in the origin and evolution of modern avian cranial kinesis during dinosaur evolution.

 
more » « less
NSF-PAR ID:
10247164
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Anatomy
Volume:
230
Issue:
3
ISSN:
0021-8782
Page Range / eLocation ID:
p. 444-460
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Changing the shape of craniofacial bones can profoundly alter ecological function, and understanding how developmental conditions sculpt skeletal phenotypes can provide insight into evolutionary adaptations. Thyroid hormone (TH) stimulates metamorphosis and regulates skeletal morphogenesis across vertebrates. To assess the roles of this hormone in sculpting the craniofacial skeleton of a non‐metamorphic vertebrate, we tested zebrafish for developmental periods of TH‐induced craniofacial shape change. We analyzed shapes of specific bones that function in prey detection, capture and processing. We quantified these elements from late‐larval through adult stages under three developmental TH profiles. Under wild‐type conditions, each bone progressively grows allometrically into a mature morphology over the course of postembryonic development. In three of the four bones, TH was required to sculpt an adult shape: hypothyroidism inhibited aspects of shape change, and allowed some components of immature shape to be retained into adulthood. Excess developmental TH stimulated aspects of precocious shape change leading to abnormal morphologies in some bones. Skeletal features with functional importance showed high sensitivities to TH, including the transformator process of the tripus, the mandibular symphysis of the lower jaw, the scutiform lamina of the hyomandibula, and the anterior arm of the pharyngeal jaw. In all, we found that TH is necessary for shaping mature morphology of several essential skeletal elements; this requirement is particularly pronounced during larval development. Altered TH titer leads to abnormal morphologies with likely functional consequences, highlighting the potential of TH and downstream pathways as targets for evolutionary change.

     
    more » « less
  2. Abstract

    An ossified or ‘fused’ mandibular symphysis characterizes the origins of the Anthropoidea, a primate suborder that includes humans. Longstanding debate about the adaptive significance of variation in this jaw joint centers on whether a bony symphysis is stronger than an unfused one spanned by cartilage and ligaments. To provide essential information regarding mechanical performance, intact adult symphyses from representative primates and scandentians were loadedex vivoto simulate stresses during biting and chewing – dorsoventral (DV) shear and lateral transverse bending (‘wishboning’). The anthropoid symphysis requires significantly more force to induce structural failure vs. strepsirrhines and scandentians with unfused joints. In wishboning, symphyseal breakage always occurs at the midline in taxa with unfused conditions, further indicating that an ossified symphysis is stronger than an unfused joint. Greater non-midline fractures among anthropoids suggest that fusion imposes unique constraints on masticatory function elsewhere along the mandible, a phenomenon likely to characterize the evolution of fusion and jaw form throughout Mammalia.

     
    more » « less
  3. Abstract

    Articular cartilage (AC) is a load-bearing tissue that covers long bones in synovial joints. The biphasic/poroelastic mechanical properties of AC help it to protect joints by distributing loads, absorbing impact forces, and reducing friction. Unfortunately, alterations in these mechanical properties adversely impact cartilage function and precede joint degeneration in the form of osteoarthritis (OA). Thus, understanding what factors regulate the poroelastic mechanical properties of cartilage is of great scientific and clinical interest. Transgenic mouse models provide a valuable platform to delineate how specific genes contribute to cartilage mechanical properties. However, the poroelastic mechanical properties of murine articular cartilage are challenging to measure due to its small size (thickness ∼ 50 microns). In the current study, our objective was to test whether the poroelastic mechanical properties of murine articular cartilage can be determined based solely on time-dependent cell death measurements under constant loading conditions. We hypothesized that in murine articular cartilage subjected to constant, sub-impact loading from an incongruent surface, cell death area and tissue strain are closely correlated. We further hypothesized that the relationship between cell death area and tissue strain can be used—in combination with inverse finite element modeling—to compute poroelastic mechanical properties. To test these hypotheses, murine cartilage-on-bone explants from different anatomical locations were subjected to constant loading conditions by an incongruent surface in a custom device. Cell death area increased over time and scaled linearly with strain, which rose in magnitude over time due to poroelastic creep. Thus, we were able to infer tissue strain from cell death area measurements. Moreover, using tissue strain values inferred from cell death area measurements, we applied an inverse finite element modeling procedure to compute poroelastic material properties and acquired data consistent with previous studies. Collectively, our findings demonstrate in the key role poroelastic creep plays in mediating cell survival in mechanically loaded cartilage and verify that cell death area can be used as a surrogate measure of tissue strain that enables determination of murine cartilage mechanical properties.

     
    more » « less
  4. Abstract

    Cranial synchondroses are cartilaginous joints between basicranial bones or between basicranial bones and septal cartilage, and have been implicated as having a potential active role in determining craniofacial form. However, few studies have examined them histologically. Using histological and immunohistochemical methods, we examined all basicranial joints in serial sagittal sections of newborn heads from nine genera of primates (five anthropoids, four strepsirrhines). Each synchondrosis was examined for characteristics of active growth centers, including a zonal distribution of proliferating and hypertrophic chondrocytes, as well as corresponding changes in matrix characteristics (i.e., density and organization of Type II collagen). Results reveal three midline and three bilateral synchondroses possess attributes of active growth centers in all species (sphenooccipital, intrasphenoidal, presphenoseptal). One midline synchondrosis (ethmoseptal) and one bilateral synchondrosis (alibasisphenoidal synchondrosis [ABS]) are active growth centers in some but not all newborn primates. ABS is oriented more anteriorly in monkeys compared to lemurs and bushbabies. The sphenoethmoidal synchondrosis (SES) varies at birth: in monkeys, it is a suture‐like joint (i.e., fibrous tissue between the two bones); however, in strepsirrhines, the jugum sphenoidale is ossified while the mesethmoid remains cartilaginous. No species possesses an SES that has the organization of a growth plate. Overall, our findings demonstrate that only four midline synchondroses have the potential to actively affect basicranial angularity and facial orientation during the perinatal timeframe, while the SES of anthropoids essentially transitions toward a “suture‐like” function, permitting passive growth postnatally. Loss of cartilaginous continuity at SES and reorientation of ABS distinguish monkeys from strepsirrhines.

     
    more » « less
  5. Background Macelognathus vagans Marsh, 1884 from the Late Jurassic Morrison Fm. of Wyoming was originally described as a dinosaur by Marsh and in 1971 Ostrom suggested crocodilian affinities. In 2005, Göhlich and collaborators identified new material of this species from Colorado as a basal crocodylomorph. However, a partial skull found in association with mandibular and postcranial remains was not described. Methods Due to the small size and delicate structures within the braincase, micro CT studies were performed on this specimen. The new anatomical information was incorporated in a phylogenetic dataset, expanding both character and taxon sampling. Results This new material reinforces the non-crocodyliform crocodylomorph affinities of Macelognathus as it bears a large otic aperture, unfused frontals and lacks ornamentation on the dorsal cranial bones. The internal structures also support these affinities as this specimen bears traits (i.e., heavily pneumatized and expanded basisphenoid; the presence of additional pneumatic features on the braincase; and the otoccipital-quadrate contact) not present in most basal crocodylomorphs. Furthermore, the presence of a wide supraoccipital and a cranioquadrate passage are traits shared with Almadasuchus from the early Late Jurassic of Argentina. Macelognathus was recovered as one of the closest relatives of crocodyliforms, forming a clade (Hallopodidae) with two other Late Jurassic taxa ( Almadasuchus and Hallopus ). Discussion The clade formed by Almadasuchus + Hallopus + Macelognathus , the Hallopodidae, is characterized by a higher degree of suturing of the braincase, posteriorly closed otic aperture (paralleled in mesoeucrocodylians) and cursorial adaptations. Also, the phylogenetic position of this lineage of derived crocodylomorphs as the sister group of Crocodyliformes implies a large amount of unsampled record (ghost lineage), at least 50 million years. 
    more » « less