Building an interdisciplinary team is critical to disaster response research as it often deals with acute onset events, short decision horizons, constrained resources, and uncertainties related to rapidly unfolding response environments. This article examines three teaming mechanisms for interdisciplinary disaster response research, including
Conceptualizing, assessing, and managing disaster risks involve collecting and synthesizing pluralistic information—from natural, built, and human systems—to characterize disaster impacts and guide policy on effective resilience investments. Disaster research and practice, therefore, are highly complex and inherently interdisciplinary endeavors. Characterizing the uncertainties involved in interdisciplinary disaster research is imperative, since misrepresenting uncertainty can lead to myopic decisions and suboptimal societal outcomes. Efficacious disaster mitigation should, therefore, explicitly address the uncertainties associated with all stages of hazard modeling, preparation, and response. However, uncertainty assessment and communication in the context of interdisciplinary disaster research remain understudied. In this “Perspective” article, we argue that in harnessing interdisciplinary methods and diverse data types in disaster research, careful deliberations on assessing
- NSF-PAR ID:
- 10247332
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Risk Analysis
- Volume:
- 41
- Issue:
- 7
- ISSN:
- 0272-4332
- Page Range / eLocation ID:
- p. 1129-1135
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ad hoc and/or grant proposal driven teams, research center or institute based teams, and teams oriented by matching expertise toward long‐term collaborations. Using hurricanes as the response context, it further examines several types of critical data that require interdisciplinary collaboration on collection, integration, and analysis. Last, suggesting a data‐driven approach to engaging multiple disciplines, the article advocates building interdisciplinary teams for disaster response research with a long‐term goal and an integrated research protocol. -
Abstract Building community resilience has become a national imperative. Substantial uncertainties in dynamic environments of emergencies and crises require real‐time information collection and dissemination based on big data analytics. These, in turn, require networked communities and cross‐sector partnerships to build lasting resilience. This viewpoint article highlights an interdisciplinary approach to building community resilience through community‐engaged research and partnerships. This perspective leverages existing community partnerships and network resources, undertakes an all‐hazard and whole‐community approach, and evaluates the use of state‐of‐the‐art information communication technologies. In doing so, it reinforces the multifaceted intergovernmental and cross‐sector networks through which resilience can be developed and sustained.more » « less
-
Abstract What is interdisciplinary research? Why is it vital to the advancement of the field of hazards and disaster research? What theory, methods, and approaches are fundamental to interdisciplinary research projects and their applications? This article addresses these and other pressing questions by taking stock of recent advancements in interdisciplinary studies of hazards and disasters. It also introduces the special issue of
Risk Analysis , which includes this introductory article and 25 original perspectives papers meant to highlight new trends and applications in the field. The papers were written following two National Science Foundation‐supported workshops that were organized in response to the growing interest in interdisciplinary hazards and disaster research, the increasing number of interdisciplinary funding opportunities and collaborations in the field, and the need for more rigorous guidance for interdisciplinary researchers and research teams. This introductory article and the special collection are organized around the cross‐cutting themes of theory, methods, approaches, interdisciplinary research projects, and applications to advance interdisciplinarity in hazards and disaster research. -
Abstract There are critical and preventable inequalities in disaster impacts and postdisaster recovery. To formulate solutions for minimizing or preventing these unequal impacts, there is a great need for interdisciplinary methodologies that use social factors to set project scopes and drive engineering analyses and designs. At present time, however, limited guidance exists on how to develop and execute interdisciplinary methodologies, especially related to the study of community disaster resilience. This article offers an approach for developing and assessing interdisciplinary research methodologies. The framework incorporates insights from social science into structural engineering for integrated research focused on community disaster resilience. The two examples offered in the article assess the interdisciplinarity of two loss estimation methodologies. The goal of this perspectives article is to facilitate future interdisciplinary community disaster resilience research given its potential for transformative outcomes in terms of encouraging decision making that is driven by the needs of those who are often overlooked in disaster mitigation and recovery policies.
-
Methods matter. They influence what we know and who we come to know about in the context of hazards and disasters. Research methods are of profound importance to the scholarly advancement of the field and, accordingly, a growing number of publications focus on research methods and ethical practices associated with the study of extreme events. Still, notable gaps exist. The National Science Foundation-funded Social Science Extreme Events Research (SSEER) network was formed, in part, to respond to the need for more specific information about the status and expertise of the social science hazards and disaster research workforce. Drawing on data from 1,013 SSEER members located across five United Nations (UN) regions, this article reports on the demographic characteristics of SSEER researchers; provides a novel inventory of methods used by social science hazards and disaster researchers; and explores how methodological approaches vary by specific researcher attributes including discipline, professional status, researcher type based on level of involvement in the field, hazard/disaster type studied, and disaster phase studied. The results have implications for training, mentoring, and workforce development initiatives geared toward ensuring that a diverse next generation of social science researchers is prepared to study the root causes and social consequences of disasters.more » « less