skip to main content


Title: Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015)
More Like this
  1. Abstract

    Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.

     
    more » « less
  2. null (Ed.)
  3. Abstract Widespread drought-induced forest mortality (DIM) is expected to increase with climate change and drought, and is expected to have major impacts on carbon and water cycles. For large-scale assessment and management, it is critical to identify variables that integrate the physiological mechanisms of DIM and signal risk of DIM. We tested whether plant water content, a variable that can be remotely sensed at large scales, is a useful indicator of DIM risk at the population level. We subjected Pinus ponderosa Douglas ex C. Lawson seedlings to experimental drought using a point of no return experimental design. Periodically during the drought, independent sets of seedlings were sampled to measure physiological state (volumetric water content (VWC), percent loss of conductivity (PLC) and non-structural carbohydrates) and to estimate population-level probability of mortality through re-watering. We show that plant VWC is a good predictor of population-level DIM risk and exhibits a threshold-type response that distinguishes plants at no risk from those at increasing risk of mortality. We also show that plant VWC integrates the mechanisms involved in individual tree death: hydraulic failure (PLC), carbon depletion across organs and their interaction. Our results are promising for landscape-level monitoring of DIM risk. 
    more » « less
  4. Abstract

    Many tropical regions are experiencing an intensification of drought, with increasing severity and frequency. The ecosystem response to these changes is still highly uncertain. On short time scales (from diurnal to seasonal), tropical forests respond to water stress by physiological controls, such as stomatal regulation and phenological adjustment, to cope with increasing atmospheric water demand and reduced water supply. However, the interactions among biological processes and co‐varying environmental factors that determine the ecosystem‐level fluxes are still unclear. Furthermore, climate variability at longer time scales, such as that generated by ENSO, produces less predictable effects because it depends on a highly stochastic combination of factors that might vary among forests and even between events in the same forest. This study will present some emerging patterns of response to water stress from 5 years of water, carbon, and energy fluxes observed on a seasonal tropical forest in central Panama, including an increase in productivity during the 2015 El Niño. These responses depend on the combination of environmental factors experienced by the forest throughout the seasonal cycle, in particular, increase in solar radiation, stimulating productivity, and increasing vapor pressure deficit (VPD) and decreasing soil moisture, limiting stomata opening. These results suggest a critical role of plant hydraulics in mediating the response to water stress over a broad range of temporal scales (diurnal, intraseasonal, seasonal, and interannual), by acclimating canopy conductance to light and VPD during different soil moisture regimes. A multilayer photosynthesis model coupled with a plant hydraulics scheme can reproduce these complex responses. However, results depend critically on parameters regulating water transport efficiency and the cost of water stress. As these costs have not been properly identified and quantified yet, more empirical research is needed to elucidate physiological mechanisms of hydraulic failure and recover, for example embolism repair and xylem regrowth.

     
    more » « less