Modern intelligent urban mobility applications are underpinned by large-scale, multivariate, spatiotemporal data streams. Working with this data presents unique challenges of data management, processing and presentation that is often overlooked by researchers. Therefore, in this work we present an integrated data management and processing framework for intelligent urban mobility systems currently in use by our partner transit agencies. We discuss the available data sources and outline our cloud-centric data management and stream processing architecture built upon open-source publish-subscribe and NoSQL data stores. We then describe our data-integrity monitoring methods. We then present a set of visualization dashboards designed for our transit agency partners. Lastly, we discuss how these tools are currently being used for AI-driven urban mobility applications that use these tools.
more »
« less
Efficient Data Management for Intelligent Urban Mobility Systems
Modern intelligent urban mobility applications are underpinned by large-scale, multivariate, spatiotemporal data streams. Working with this data presents unique challenges of data management, processing and presentation that is often overlooked by researchers. Therefore, in this work we present an integrated data management and processing framework for intelligent urban mobility systems currently in use by our partner transit agencies. We discuss the available data sources and outline our cloud-centric data management and stream processing architecture built upon open-source publish-subscribe and NoSQL data stores. We then describe our data-integrity monitoring methods. We then present a set of visualization dashboards designed for our transit agency partners. Lastly, we discuss how these tools are currently being used for AI-driven urban mobility applications that use these tools.
more »
« less
- PAR ID:
- 10247920
- Date Published:
- Journal Name:
- Proceedings of the Workshop on AI for Urban Mobility at the 35th AAAI Conference on Artificial Intelligence (AAAI-21)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
New rideshare and shared-mobility services have transformed urban mobility in recent years. Therefore, transit agencies are looking for ways to adapt to this rapidly changing environment. In this space, ridepooling has the potential to improve efficiency and reduce costs by allowing users to share rides in high-capacity vehicles and vans. Most transit agencies already operate various ridepooling services including microtransit and paratransit. However, the objectives and constraints for implementing these services vary greatly between agencies. This brings multiple challenges. First, off-the-shelf ridepooling formulations must be adapted for real-world conditions and constraints. Second, the lack of modular and reusable software makes it hard to implement and evaluate new ridepooling algorithms and approaches in real-world settings. Therefore, we propose an on-demand transportation scheduling software for microtransit and paratransit services. This software is aimed at transit agencies looking to incorporate state-of-the-art rideshare and ridepooling algorithms in their everyday operations. We provide management software for dispatchers and mobile applications for drivers and users. Lastly, we discuss the challenges in adapting state-of-the-art methods to real-world operations.more » « less
-
Zero to a trillion: Advancing surface process studies with open access to high resolution topographyTarolli, P.; Mudd, S. (Ed.)High-resolution topography (HRT) is a powerful observational tool for studying the Earth's surface, vegetation, and urban landscapes, with broad scientific, engineering, and education-based applications. Submeter resolution imaging is possible when collected with laser and photogrammetric techniques using the ground, air, and space-based platforms. Open access to these data and a cyberinfrastructure platform that enables users to discover, manage, share, and process then increases the impact of investments in data collection and catalyzes scientific discovery. Furthermore, open and online access to data enables broad interdisciplinary use of HRT across academia and in communities such as education, public agencies, and the commercial sector. OpenTopography, supported by the US National Science Foundation, aims to democratize access to Earth science-oriented, HRT data and processing tools. We utilize cyberinfrastructure, including large-scale data management, high-performance computing, and service-oriented architectures to provide efficient web-based visualization and access to large, HRT datasets. OT colocates data with processing tools to enable users to quickly access custom data and derived products for their application, with the ultimate goal of making these powerful data easier to use. OT's rapidly growing data holdings currently include 283 lidar and photogrammetric, point cloud datasets (>1.2 trillion points) covering 236,364km2. As a testament to OT's success, more than 86,000 users have processed over 5 trillion lidar points. This use has resulted in more than 290 peer-reviewed publications across numerous academic domains including Earth science, geography, computer science, and ecology.more » « less
-
Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of Global Positioning System (GPS)–equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated a significant impact in various domains, including traffic management, urban planning, and health sciences. In this article, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state-of-the-art, and describe open challenges for the research community in the coming years.more » « less
-
Urban population growth has significantly complicated the management of mobility systems, demanding innovative tools for planning. Generative Crowd-Flow (GCF) models, which leverage machine learning to simulate urban movement patterns, offer a promising solution but lack sufficient evaluation of their fairness–a critical factor for equitable urban planning. We present an approach to measure and benchmark the fairness of GCF models by developing a first-of-its-kind set of fairness metrics specifically tailored for this purpose. Using observed flow data, we employ a stochastic biased sampling approach to generate multiple permutations of Origin-Destination datasets, each demonstrating intentional bias. Our proposed framework allows for the comparison of multiple GCF models to evaluate how models introduce bias in outputs. Preliminary results indicate a tradeoff between model accuracy and fairness, underscoring the need for careful consideration in the deployment of these technologies. To this end, this study bridges the gap between human mobility literature and fairness in machine learning, with potential to help urban planners and policymakers leverage GCF models for more equitable urban infrastructure development.more » « less
An official website of the United States government

