skip to main content


Title: Spin-orbital coupling and slow phonon effects enabled persistent photoluminescence in organic crystal under isomer doping
Abstract

When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.

 
more » « less
PAR ID:
10248380
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The ultralong‐lived upconversion luminescence with the lifetime of 0.48 s in a broad spectral range (530–650 nm) is observed in CD49 (9‐(3‐(5‐bromopyridin‐3‐yl)prop‐2‐yn‐1‐yl)‐9H‐carbazole) crystal designed with donor–acceptor (carbazole–pyridine) structures under infrared excitation, simultaneously accompanied with second harmonic generation (SHG). This phenomenon indicates orderly packing donor–acceptor structures form a nonlinearly polarizable ferroelectric‐like lattice with ultralong‐lived light‐emitting states, leading to much prolonged nonlinear optical behaviors. The persistent upconversion luminescence together with SHG is largely reduced when lowering crystallinity. This implies that nonlinearly polarizable ferroelectric‐like lattice provides the necessary condition to generate persistent upconversion luminescence. Evidently, persistent upconversion luminescence becomes completely lacking when only using ultralong‐lived light‐emitting states without nonlinearly polarizable ferroelectric‐like lattice, exampled by 4‐(dimethylamino)benzonitrile dispersed in polyvinyl alcohol matrix. Magneto‐photoluminescence shows that persistent upconversion luminescence is essentially a super‐delayed fluorescence from crystalline intermolecular charge‐transfer excitons formed in the nonlinearly polarizable ferroelectric‐like lattice. Magnetodielectrics indicate crystalline intermolecular charge‐transfer excitons are coupled with nonlinearly polarizable ferroelectric‐like lattice, leading to prolonged nonlinear optical behaviors shown as persistent upconversion luminescence through super delayed fluorescence. Therefore, crystalline intermolecular charge‐transfer excitons formed in nonlinearly polarizable ferroelectric‐like lattice provide an interesting platform to generate prolonged nonlinear optical behaviors toward developing persistent upconversion luminescence under multiphoton excitation.

     
    more » « less
  2. null (Ed.)
    Donor–π-acceptor (D–π-A) fluorophores consisting of a donor unit, a π linker, and an acceptor moiety have attracted attention in the last decade. In this study, we report the synthesis, characterization, optical properties, TD-DFT, and cytotoxicity studies of 17 near infrared (NIR) D–π-A analogs which have not been reported so far to the best of our knowledge. These fluorophores have chloroacrylic acid as the acceptor unit and various donor units such as indole, benzothiazole, benzo[ e ]indole, and quinoline. The fluorophores showed strong absorption in the NIR (700–970 nm) region due to their enhanced intramolecular charge transfer (ICT) between chloroacrylic acid and the donor moieties connected with the Vilsmeier–Haack linker. The emission wavelength maxima of the fluorophores were in between 798 and 870 nm. Compound 20 with a 4-quinoline donor moiety showed an emission wavelength above 1000 nm in the NIR II window. The synthesized fluorophores were characterized by 1 H NMR and 13 C NMR, and their optical properties were studied. Time dependent density functional theory (TD-DFT) calculations showed that the charge transfer occurs from the donor groups (indole, benzothiazole, benzo[ e ]indole, and quinoline) to the acceptor chloroacrylic acid moiety. Fluorophores with [HOMO] to [LUMO+1] transitions were shown to possess a charge separation character. The cytotoxicity of selected fluorophores, 4 , 7 , 10 and 12 was investigated against breast cancer cell lines and they showed better activity than the anti-cancer agent docetaxel. 
    more » « less
  3. Pentacene field-effect transistors incorporating ZnO quantum dots can be used as a sensitive probe of the optical properties of a buried donor-acceptor interface. Photoinduced charge transfer between pentacene and ZnO in these devices varies with incident photon energy and reveals which energies will contribute most to charge transfer in other structures. A subsequent slow return to the dark state following the end of illumination arises from near-interface traps. Charge transfer has a sharp onset at 1.7 eV and peaks at 1.82 and 2.1 eV due to transitions associated with excitons, features absent in pentacene FETs without ZnO.

     
    more » « less
  4. The present study evaluates the potential combination of charge-transfer electron-donor–acceptor π–π complexation and C—H hydrogen bonding to form colored cocrystals. The crystal structures of the red 1:1 cocrystals formed from the isomeric pyridines 4- and 3-{2-[4-(dimethylamino)phenyl]ethynyl}pyridine with 1-[2-(3,5-dinitrophenyl)ethynyl]-2,3,5,6-tetrafluorobenzene, both C 14 H 4 F 4 N 2 O 4 ·C 15 H 14 N 2 , are reported. Intermolecular interaction energy calculations confirm that π-stacking interactions dominate the intermolecular interactions within each crystal structure. The close contacts revealed by Hirshfeld surface calculations are predominantly C—H interactions with N, O, and F atoms. 
    more » « less
  5. Abstract

    Exciton dynamics can be strongly affected by lattice vibrations through electron-phonon coupling. This is rarely explored in two-dimensional magnetic semiconductors. Focusing on bilayer CrI3, we first show the presence of strong electron-phonon coupling through temperature-dependent photoluminescence and absorption spectroscopy. We then report the observation of periodic broad modes up to the 8th order in Raman spectra, attributed to the polaronic character of excitons. We establish that this polaronic character is dominated by the coupling between the charge-transfer exciton at 1.96 eV and a longitudinal optical phonon at 120.6 cm−1. We further show that the emergence of long-range magnetic order enhances the electron-phonon coupling strength by ~50% and that the transition from layered antiferromagnetic to ferromagnetic order tunes the spectral intensity of the periodic broad modes, suggesting a strong coupling among the lattice, charge and spin in two-dimensional CrI3. Our study opens opportunities for tailoring light-matter interactions in two-dimensional magnetic semiconductors.

     
    more » « less