In the field of healthcare, electronic health records (EHR) serve as crucial training data for developing machine learning models for diagnosis, treatment, and the management of healthcare resources. However, medical datasets are often imbalanced in terms of sensitive attributes such as race/ethnicity, gender, and age. Machine learning models trained on class-imbalanced EHR datasets perform significantly worse in deployment for individuals of the minority classes compared to those from majority classes, which may lead to inequitable healthcare outcomes for minority groups. To address this challenge, we propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE), a novel approach to augment imbalanced datasets using samples generated by a deep generative model. The MCRAGE process involves training a Conditional Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes. We use this synthetic data to augment the existing imbalanced dataset, resulting in a more balanced distribution across all classes, which can be used to train less biased downstream models. We measure the performance of MCRAGE versus alternative approaches using Accuracy, F1 score and AUROC of these downstream models. We provide theoretical justification for our method in terms of recent convergence results for DDPMs.
more »
« less
Quantifying the Evaluation of Heuristic Methods for Textual Data Augmentation
Data augmentation has been shown to be effective in providing more training data for machine learning and resulting in more robust classifiers. However, for some problems, there may be multiple augmentation heuristics, and the choices of which one to use may significantly impact the success of the training. In this work, we propose a metric for evaluating augmentation heuristics; specifically, we quantify the extent to which an example is “hard to distinguish” by considering the difference between the distribution of the augmented samples of different classes. Experimenting with multiple heuristics in two prediction tasks (positive/negative sentiment and verbosity/conciseness) validates our claims by revealing the connection between the distribution difference of different classes and the classification accuracy.
more »
« less
- Award ID(s):
- 1735752
- PAR ID:
- 10248657
- Date Published:
- Journal Name:
- Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
- Page Range / eLocation ID:
- 200 to 208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For real-world graph data, the node class distribution is inherently imbalanced and long-tailed, which naturally leads to a few-shot learning scenario with limited nodes labeled for newly emerging classes. Existing efforts are carefully designed to solve such a few-shot learning problem via data augmentation, learning transferable initialization, to name a few. However, most, if not all, of them are based on a strong assumption that all the test nodes must exclusively come from novel classes, which is impractical in real-world applications. In this paper, we study a broader and more realistic problem named generalized few-shot node classification, where the test samples can be from both novel classes and base classes. Compared with the standard fewshot node classification, this new problem imposes several unique challenges, including asymmetric classification and inconsistent preference. To counter those challenges, we propose a shot-aware graph neural network (STAGER) equipped with an uncertainty-based weight assigner module for adaptive propagation. To formulate this problem from the meta-learning perspective, we propose a new training paradigm named imbalanced episodic training to ensure the label distribution is consistent between the training and test scenarios. Experiment results on four real-world datasets demonstrate the efficacy of our model, with up to 14% accuracy improvement over baselines.more » « less
-
Predicting violent storms and dangerous weather conditions with current models can take a long time due to the immense complexity associated with weather simulation. Machine learning has the potential to classify tornadic weather patterns much more rapidly, thus allowing for more timely alerts to the public. To deal with class imbalance challenges in machine learning, different data augmentation approaches have been proposed. In this work, we examine the wall time difference between live data augmentation methods versus the use of preaugmented data when they are used in a convolutional neural network based training for tornado prediction. We also compare CPU and GPU based training over varying sizes of augmented data sets. Additionally we examine what impact varying the number of GPUs used for training will produce given a convolutional neural network.more » « less
-
Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have additional synthetic features.more » « less
-
Data augmentation (DA) is an essential technique for training state-of-the-art deep learning systems. In this paper, we empirically show that the standard data augmentation methods may introduce distribution shift and consequently hurt the performance on unaugmented data during inference. To alleviate this issue, we propose a simple yet effective approach, dubbed KeepAugment, to increase the fidelity of augmented images. The idea is to use the saliency map to detect important regions on the original images and preserve these informative regions during augmentation. This information-preserving strategy allows us to generate more faithful training examples. Empirically, we demonstrate that our method significantly improves upon a number of prior art data augmentation schemes, e.g. AutoAugment, Cutout, random erasing, achieving promising results on image classification, semi-supervised image classification, multi-view multi-camera tracking and object detection.more » « less
An official website of the United States government

