The physical architectures of information storage systems often dictate how information is encoded, databases are organized, and files are accessed. Here we show that a simple architecture comprised of a T7 promoter and a single-stranded overhang domain (ss-dsDNA), can unlock dynamic DNA-based information storage with powerful capabilities and advantages. The overhang provides a physical address for accessing specific DNA strands as well as implementing a range of in-storage file operations. It increases theoretical storage densities and capacities by expanding the encodable sequence space and simplifies the computational burden in designing sets of orthogonal file addresses. Meanwhile, the T7 promoter enables repeatable information access by transcribing information from DNA without destroying it. Furthermore, saturation mutagenesis around the T7 promoter and systematic analyses of environmental conditions reveal design criteria that can be used to optimize information access. This simple but powerful ss-dsDNA architecture lays the foundation for information storage with versatile capabilities.
DNA holds significant promise as a data storage medium due to its density, longevity, and resource and energy conservation. These advantages arise from the inherent biomolecular structure of DNA which differentiates it from conventional storage media. The unique molecular architecture of DNA storage also prompts important discussions on how data should be organized, accessed, and manipulated and what practical functionalities may be possible. Here we leverage thermodynamic tuning of biomolecular interactions to implement useful data access and organizational features. Specific sets of environmental conditions including distinct DNA concentrations and temperatures were screened for their ability to switchably access either all DNA strands encoding full image files from a GB-sized background database or subsets of those strands encoding low resolution, File Preview, versions. We demonstrate File Preview with four JPEG images and provide an argument for the substantial and practical economic benefit of this generalizable strategy to organize data.
more » « less- PAR ID:
- 10248725
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Deoxyribonucleic Acid (DNA), with its ultra-high storage density and long durability, is a promising long-term archival storage medium and is attracting much attention today. A DNA storage system encodes and stores digital data with synthetic DNA sequences and decodes DNA sequences back to digital data via sequencing. Many encoding schemes have been proposed to enlarge DNA storage capacity by increasing DNA encoding density. However, only increasing encoding density is insufficient because enhancing DNA storage capacity is a multifaceted problem. This paper assumes that random accesses are necessary for practical DNA archival storage. We identify all factors affecting DNA storage capacity under current technologies and systematically investigate the practical DNA storage capacity with several popular encoding schemes. The investigation result shows the collision between primers and DNA payload sequences is a major factor limiting DNA storage capacity. Based on this discovery, we designed a new encoding scheme called Collision Aware Code (CAC) to trade some encoding density for the reduction of primer-payload collisions. Compared with the best result among the five existing encoding schemes, CAC can extricate 120% more primers from collisions and increase the DNA tube capacity from 211.96 GB to 295.11 GB. Besides, we also evaluate CAC's recoverability from DNA storage errors. The result shows CAC is comparable to those of existing encoding schemes.more » « less
-
With the rapid increase of available digital data, we are searching for a storage media with high density and capability of long-term preservation. Deoxyribonucleic Acid (DNA) storage is identified as such a promising candidate, especially for archival storage systems. However, the encoding density (i.e., how many binary bits can be encoded into one nucleotide) and error handling are two major factors intertwined in DNA storage. Considering encoding density, theoretically, one nucleotide (i.e., A, T, G, or C) can encode two binary bits (upper bound). However, due to biochemical constraints and other necessary information associated with payload, currently the encoding densities of various DNA storage systems are much less than this upper bound. Additionally, all existing studies of DNA encoding schemes are based on static analysis and really lack the awareness of dynamically changed digital patterns. Therefore, the gap between the static encoding and dynamic binary patterns prevents achieving a higher encoding density for DNA storage systems. In this paper, we propose a new Digital Pattern-Aware DNA storage system, called DP-DNA, which can efficiently store digital data in the DNA storage with high encoding density. DP-DNA maintains a set of encoding codes and uses a digital pattern-aware code (DPAC) to analyze the patterns of a binary sequence for a DNA strand and selects an appropriate code for encoding the binary sequence to achieve a high encoding density. An additional encoding field is added to the DNA encoding format, which can distinguish the encoding scheme used for those DNA strands, and thus we can decode DNA data back to its original digital data. Moreover, to further improve the encoding density, a variable-length scheme is proposed to increase the feasibility of the code scheme with a high encoding density. Finally, the experimental results indicate that the proposed DP-DNA achieves up to 103.5% higher encoding densities than prior work.more » « less
-
Abstract The storage of data in DNA typically involves encoding and synthesizing data into short oligonucleotides, followed by reading with a sequencing instrument. Major challenges include the molecular consumption of synthesized DNA, basecalling errors, and limitations with scaling up read operations for individual data elements. Addressing these challenges, we describe a DNA storage system called MDRAM (Magnetic DNA-based Random Access Memory) that enables repetitive and efficient readouts of targeted files with nanopore-based sequencing. By conjugating synthesized DNA to magnetic agarose beads, we enabled repeated data readouts while preserving the original DNA analyte and maintaining data readout quality. MDRAM utilizes an efficient convolutional coding scheme that leverages soft information in raw nanopore sequencing signals to achieve information reading costs comparable to Illumina sequencing despite higher error rates. Finally, we demonstrate a proof-of-concept DNA-based proto-filesystem that enables an exponentially-scalable data address space using only small numbers of targeting primers for assembly and readout.
-
null (Ed.)This paper introduces a novel LiDAR point cloud data encoding solution that is compact, flexible, and fully supports distributed data storage within the Hadoop distributed computing environment. The proposed data encoding solution is developed based on Sequence File and Google Protocol Buffers. Sequence File is a generic splittable binary file format built in the Hadoop framework for storage of arbitrary binary data. The key challenge in adopting the Sequence File format for LiDAR data is in the strategy for effectively encoding the LiDAR data as binary sequences in a way that the data can be represented compactly, while allowing necessary mutation. For that purpose, a data encoding solution, based on Google Protocol Buffers (a language-neutral, cross-platform, extensible data serialisation framework) was developed and evaluated. Since neither of the underlying technologies is sufficient to completely and efficiently represent all necessary point formats for distributed computing, an innovative fusion of them was required to provide a viable data storage solution. This paper presents the details of such a data encoding implementation and rigorously evaluates the efficiency of the proposed data encoding solution. Benchmarking was done against a straightforward, naive text encoding implementation using a high-density aerial LiDAR scan of a portion of Dublin, Ireland. The results demonstrated a 6-times reduction in data volume, a 4-times reduction in database ingestion time, and up to a 5 times reduction in querying time.more » « less