skip to main content


Title: Three-Dimensional Thermodynamic Simulation of Condensin as a DNA-Based Translocase
Chromatin dynamics and organization can be altered by condensin complexes. In turn, the molecular behavior of a condensin complex changes based on the tension of the substrate to which condensin is bound. This interplay between chromatin organization and condensin behavior demonstrates the need for tools that allows condensin complexes to be observed on a variety of chromatin organizations. We provide a method for simulating condensin complexes on a dynamic polymer substrate using the polymer dynamics simulator ChromoShake and the condensin simulator RotoStep. These simulations can be converted into simulated fluorescent images that are able to be directly compared to experimental images of condensin and fluorescently labeled chromatin. Our pipeline enables users to explore how changes in condensin behavior alters chromatin dynamics and vice versa while providing simulated image datasets that can be directly compared to experimental observations.  more » « less
Award ID(s):
1816630 1664645
NSF-PAR ID:
10248732
Author(s) / Creator(s):
; ; ;
Editor(s):
Badrinarayanan, A.
Date Published:
Journal Name:
Methods in molecular biology
Volume:
2004
ISSN:
1064-3745
Page Range / eLocation ID:
291-318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bloom, Kerry (Ed.)
    The chromosomes—DNA polymers and their binding proteins—are compacted into a spatially organized, yet dynamic, three-dimensional structure. Recent genome-wide chromatin conformation capture experiments reveal a hierarchical organization of the DNA structure that is imposed, at least in part, by looping interactions arising from the activity of loop extrusion factors. The dynamics of chromatin reflects the response of the polymer to a combination of thermal fluctuations and active processes. However, how chromosome structure and enzymes acting on chromatin together define its dynamics remains poorly understood. To gain insight into the structure-dynamics relationship of chromatin, we combine high-precision microscopy in living Schizosaccharomyces pombe cells with systematic genetic perturbations and Rouse model polymer simulations. We first investigated how the activity of two loop extrusion factors, the cohesin and condensin complexes, influences chromatin dynamics. We observed that deactivating cohesin, or to a lesser extent condensin, increased chromatin mobility, suggesting that loop extrusion constrains rather than agitates chromatin motion. Our corresponding simulations reveal that the introduction of loops is sufficient to explain the constraining activity of loop extrusion factors, highlighting that the conformation adopted by the polymer plays a key role in defining its dynamics. Moreover, we find that the number of loops or residence times of loop extrusion factors influence the dynamic behavior of the chromatin polymer. Last, we observe that the activity of the INO80 chromatin remodeler, but not the SWI/SNF or RSC complexes, is critical for ATP-dependent chromatin mobility in fission yeast. Taking the data together, we suggest that thermal and INO80-dependent activities exert forces that drive chromatin fluctuations, which are constrained by the organization of the chromosome into loops. 
    more » « less
  2. null (Ed.)
    Abstract The revolution in understanding higher order chromosome dynamics and organization derives from treating the chromosome as a chain polymer and adapting appropriate polymer-based physical principles. Using basic principles, such as entropic fluctuations and timescales of relaxation of Rouse polymer chains, one can recapitulate the dominant features of chromatin motion observed in vivo. An emerging challenge is to relate the mechanical properties of chromatin to more nuanced organizational principles such as ubiquitous DNA loops. Toward this goal, we introduce a real-time numerical simulation model of a long chain polymer in the presence of histones and condensin, encoding physical principles of chromosome dynamics with coupled histone and condensin sources of transient loop generation. An exact experimental correlate of the model was obtained through analysis of a model-matching fluorescently labeled circular chromosome in live yeast cells. We show that experimentally observed chromosome compaction and variance in compaction are reproduced only with tandem interactions between histone and condensin, not from either individually. The hierarchical loop structures that emerge upon incorporation of histone and condensin activities significantly impact the dynamic and structural properties of chromatin. Moreover, simulations reveal that tandem condensin–histone activity is responsible for higher order chromosomal structures, including recently observed Z-loops. 
    more » « less
  3. Assemblies of structural maintenance of chromosomes (SMC) proteins and kleisin subunits are essential to chromosome organization and segregation across all kingdoms of life. While structural data exist for parts of the SMC−kleisin complexes, complete structures of the entire complexes have yet to be determined, making mechanistic studies difficult. Using an integrative approach that combines crystallographic structural information about the globular subdomains, along with coevolutionary information and an energy landscape optimized force field (AWSEM), we predict atomic-scale structures for several tripartite SMC−kleisin complexes, including prokaryotic condensin, eukaryotic cohesin, and eukaryotic condensin. The molecular dynamics simulations of the SMC−kleisin protein complexes suggest that these complexes exist as a broad conformational ensemble that is made up of different topological isomers. The simulations suggest a critical role for the SMC coiled-coil regions, where the coils intertwine with various linking numbers. The twist and writhe of these braided coils are coupled with the motion of the SMC head domains, suggesting that the complexes may function as topological motors. Opening, closing, and translation along the DNA of the SMC−kleisin protein complexes would allow these motors to couple to the topology of DNA when DNA is entwined with the braided coils.

     
    more » « less
  4. Cryo-electron microscopy (cryo-EM) is a structural technique that has played a significant role in protein structure determination in recent years. Compared to the traditional methods of X-ray crystallography and NMR spectroscopy, cryo-EM is capable of producing images of much larger protein complexes. However, cryo-EM reconstructions are limited to medium-resolution (~4–10 Å) for some cases. At this resolution range, a cryo-EM density map can hardly be used to directly determine the structure of proteins at atomic level resolutions, or even at their amino acid residue backbones. At such a resolution, only the position and orientation of secondary structure elements (SSEs) such as α-helices and β-sheets are observable. Consequently, finding the mapping of the secondary structures of the modeled structure (SSEs-A) to the cryo-EM map (SSEs-C) is one of the primary concerns in cryo-EM modeling. To address this issue, this study proposes a novel automatic computational method to identify SSEs correspondence in three-dimensional (3D) space. Initially, through a modeling of the target sequence with the aid of extracting highly reliable features from a generated 3D model and map, the SSEs matching problem is formulated as a 3D vector matching problem. Afterward, the 3D vector matching problem is transformed into a 3D graph matching problem. Finally, a similarity-based voting algorithm combined with the principle of least conflict (PLC) concept is developed to obtain the SSEs correspondence. To evaluate the accuracy of the method, a testing set of 25 experimental and simulated maps with a maximum of 65 SSEs is selected. Comparative studies are also conducted to demonstrate the superiority of the proposed method over some state-of-the-art techniques. The results demonstrate that the method is efficient, robust, and works well in the presence of errors in the predicted secondary structures of the cryo-EM images. 
    more » « less
  5. The generalized contrast-to-noise ratio (gCNR) is a relatively new image quality metric designed to assess the probability of lesion detectability in ultrasound images. Although gCNR was initially demonstrated with ultrasound images, the metric is theoretically applicable to multiple types of medical images. In this paper, the applicability of gCNR to photoacoustic images is investigated. The gCNR was computed for both simulated and experimental photoacoustic images generated by amplitude-based (i.e., delay-and-sum) and coherence-based (i.e., short-lag spatial coherence) beamformers. These gCNR measurements were compared to three more traditional image quality metrics (i.e., contrast, contrast-to-noise ratio, and signal-to-noise ratio) applied to the same datasets. An increase in qualitative target visibility generally corresponded with increased gCNR. In addition, gCNR magnitude was more directly related to the separability of photoacoustic signals from their background, which degraded with the presence of limited bandwidth artifacts and increased levels of channel noise. At high gCNR values (i.e., 0.95-1), contrast, contrast-to-noise ratio, and signal-to-noise ratio varied by up to 23.7-56.2 dB, 2.0-3.4, and 26.5-7.6×1020, respectively, for simulated, experimental phantom, andin vivodata. Therefore, these traditional metrics can experience large variations when a target is fully detectable, and additional increases in these values would have no impact on photoacoustic target detectability. In addition, gCNR is robust to changes in traditional metrics introduced by applying a minimum threshold to image amplitudes. In tandem with other photoacoustic image quality metrics and with a defined range of 0 to 1, gCNR has promising potential to provide additional insight, particularly when designing new beamformers and image formation techniques and when reporting quantitative performance without an opportunity to qualitatively assess corresponding images (e.g., in text-only abstracts).

     
    more » « less