skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distances to PHANGS Galaxies: New Tip of the Red Giant Branch Measurements and Adopted Distances
Abstract PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ∼20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the dataset will provide an unprecedented look into the connections between young stars, H ii regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g., brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy halos in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 11 galaxies from ∼4 to ∼15 Mpc, based on the first year of PHANGS-HST observations. Five of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, NGC 4321, and NGC 4328), and eight of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.  more » « less
Award ID(s):
1653300
PAR ID:
10248882
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV– U – B – V – I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V - and I -band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μ m imaging has been approved. 
    more » « less
  2. Abstract The tip of the red giant branch (TRGB) allows for the measurement of precise and accurate distances to nearby galaxies based on the brightest ascent of low-mass red giant branch stars before they undergo the helium flash. With the advent of JWST, there is great promise to utilize the technique to measure galaxy distances out to at least 50 Mpc, significantly further than the Hubble Space Telescope's (HST's) reach of 20 Mpc. However, with any standard candle, it is first necessary to provide an absolute reference. Here, we use Cycle 1 data to provide an absolute calibration in the F090W filter. F090W is most similar to the F814W filter commonly used for TRGB measurements with HST, which had been adopted by the community due to its minimal dependence on the underlying metallicities and ages of stars. The imaging we use was taken in the outskirts of NGC 4258, which has a direct geometrical distance measurement from the Keplerian motion of its water megamaser. Utilizing several measurement techniques, we find M TRGB F 090 W = −4.362 ± 0.033 (stat) ± 0.045 (sys) mag (Vega) for the metal-poor TRGB. We also perform measurements of the TRGB in two Type Ia supernova hosts, NGC 1559 and NGC 5584. We find good agreement between our TRGB distances and previous determinations of distances to these galaxies from Cepheids (Δ = 0.01 ± 0.06 mag), with these differences being too small to explain the Hubble tension (∼0.17 mag). In addition, we showcase the serendipitous discovery of a faint dwarf galaxy near NGC 5584. 
    more » « less
  3. Abstract We present a measurement of the Hubble constantH0from surface brightness fluctuation (SBF) distances for 63 bright, mainly early-type galaxies out to 100 Mpc observed with the WFC3/IR on the Hubble Space Telescope (HST). The sample is drawn from several independent HST imaging programs using the F110W bandpass, with the majority of the galaxies being selected from the MASSIVE survey. The distances reach the Hubble flow with a median statistical uncertainty per measurement of 4%. We construct the Hubble diagram with these IR SBF distances and constrainH0using four different treatments of the galaxy velocities. For the SBF zero-point calibration, we use both the existing tie to Cepheid variables, updated for consistency with the latest determination of the distance to the Large Magellanic Cloud from detached eclipsing binaries, and a new tie to the tip of the red giant branch (TRGB) calibrated from the maser distance to NGC 4258. These two SBF calibrations are consistent with each other and with theoretical predictions from stellar population models. From a weighted average of the Cepheid and TRGB calibrations, we deriveH0= 73.3 ± 0.7 ± 2.4 km s−1Mpc−1, where the error bars reflect the statistical and systematic uncertainties. This result accords well with recent measurements ofH0from Type Ia supernovae, time delays in multiply lensed quasars, and water masers. The systematic uncertainty could be reduced to below 2% by calibrating the SBF method with precision TRGB distances for a statistical sample of massive early-type galaxies out to the Virgo cluster measured with the James Webb Space Telescope. 
    more » « less
  4. Abstract We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby ( d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release. 
    more » « less
  5. Abstract The Hubble Tension, a >5σdiscrepancy between direct and indirect measurements of the Hubble constant (H0), has persisted for a decade and motivated intense scrutiny of the paths used to inferH0. Comparing independently derived distances for a set of galaxies with different standard candles, such as the tip of the red giant branch (TRGB) and Cepheid variables, can test for systematics in the middle rung of the distance ladder. TheIband is the preferred filter for measuring the TRGB due to constancy with color, a result of low sensitivity to population differences in age and metallicity supported by stellar models. We use James Webb Space Telescope (JWST) observations with the maser host NGC 4258 as our geometric anchor to measureI-band (F090W versus F090W − F150W) TRGB distances to eight hosts of 10 Type Ia supernovae (SNe Ia) within 28 Mpc: NGC 1448, NGC 1559, NGC 2525, NGC 3370, NGC 3447, NGC 5584, NGC 5643, and NGC 5861. We compare these with Hubble Space Telescope (HST) Cepheid-based relative distance moduli for the same galaxies and anchor. We find no evidence of a difference between their weighted means, 0.01 ± 0.04 (stat) ± 0.04 (sys) mag. We produce 14 variants of the TRGB analysis, altering the smoothing level and color range used to measure the tips to explore their impact. For some hosts, this changes the identification of the strongest peak, but this causes little change to the sample mean difference, producing a full range of 0.00–0.02 mag, all consistent at 1σwith no difference. The result matches past comparisons ofI-band TRGB and Cepheids when both use HST. SNe and anchor samples observed with JWST are too small to yield a measure ofH0that is competitive with the HST sample of 42 SNe Ia and 4 anchors; however, they already provide a vital systematic cross-check to HST measurements of the distance ladder. 
    more » « less