Primary forests play a crucial role in providing essential ecosystem services and supporting biodiversity compared to secondary forests. With increasing threats from extreme climate events and human activities, monitoring primary forest loss is critical for understanding the impact of these threats on ecosystems and biodiversity. Dense time series data from remotely sensed satellite imagery allow us to track historical disturbances, making it an effective source for mapping primary forests over time. However, distinguishing between primary and secondary forests based on spectral-temporal information remains challenging as primary forests can show high resilience to certain natural disturbances (e.g., drought), and secondary forests may not have experienced any disturbance during the satellite observation period. In this context, this study aims to map primary forests on the Caribbean island of Hispaniola using the time series approach and resilience metrics given that primary forests tend to be more resilient than secondary forests. To achieve this, we used spectral-temporal features from COntinuous monitoring of Land Disturbance (COLD) algorithm based on all available Landsat data between 1984 and 2023. Additionally, a resilience map is generated from deseasonalized and detrended spectral observations using the lag-1 autocorrelation method. Then, a Random Forest model was employed to generate an annual primary forest map.
more »
« less
Exit time as a measure of ecological resilience
Ecological resilience is the magnitude of the largest perturbation from which a system can still recover to its original state. However, a transition into another state may often be invoked by a series of minor synergistic perturbations rather than a single big one. We show how resilience can be estimated in terms of average life expectancy, accounting for this natural regime of variability. We use time series to fit a model that captures the stochastic as well as the deterministic components. The model is then used to estimate the mean exit time from the basin of attraction. This approach offers a fresh angle to anticipating the chance of a critical transition at a time when high-resolution time series are becoming increasingly available.
more »
« less
- Award ID(s):
- 2025982
- PAR ID:
- 10248969
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 372
- Issue:
- 6547
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- Article No. eaay4895
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Complex systems can exhibit sudden transitions or regime shifts from one stable state to another, typically referred to as critical transitions. It becomes a great challenge to identify a robust warning sufficiently early that action can be taken to avert a regime shift. We employ landscape-flux theory from nonequilibrium statistical mechanics as a general framework to quantify the global stability of ecological systems and provide warning signals for critical transitions. We quantify the average flux as the nonequilibrium driving force and the dynamical origin of the nonequilibrium transition while the entropy production rate as the nonequilibrium thermodynamic cost and thermodynamic origin of the nonequilibrium transition. Average flux, entropy production, nonequilibrium free energy, and time irreversibility quantified by the difference in cross-correlation functions forward and backward in time can serve as early warning signals for critical transitions much earlier than other conventional predictors. We utilize a classical shallow lake model as an exemplar for our early warning prediction. Our proposed method is general and can be readily applied to assess the resilience of many other ecological systems. The early warning signals proposed here can potentially predict critical transitions earlier than established methods and perhaps even sufficiently early to avert catastrophic shifts.more » « less
-
Recently, remarkable progress has been made over large language models (LLMs), demonstrating their unprecedented capability in varieties of natural language tasks. However, completely training a large general-purpose model from the scratch is challenging for time series analysis, due to the large volumes and varieties of time series data, as well as the non-stationarity that leads to concept drift impeding continuous model adaptation and re-training. Recent advances have shown that pre-trained LLMs can be exploited to capture complex dependencies in time series data and facilitate various applications. In this survey, we provide a systematic overview of existing methods that leverage LLMs for time series analysis. Specifically, we first state the challenges and motivations of applying language models in the context of time series as well as brief preliminaries of LLMs. Next, we summarize the general pipeline for LLM-based time series analysis, categorize existing methods into different groups (\textit{i.e.}, direct query, tokenization, prompt design, fine-tune, and model integration), and highlight the key ideas within each group. We also discuss the applications of LLMs for both general and spatial-temporal time series data, tailored to specific domains. Finally, we thoroughly discuss future research opportunities to empower time series analysis with LLMs.more » « less
-
Abstract Resilience is the ability of ecosystems to maintain function while experiencing perturbation. Globally, forests are experiencing disturbances of unprecedented quantity, type, and magnitude that may diminish resilience. Early warning signals are statistical properties of data whose increase over time may provide insights into decreasing resilience, but there have been few applications to forests. We quantified four early warning signals (standard deviation, lag-1 autocorrelation, skewness, and kurtosis) across detrended time series of multiple ecosystem state variables at the Hubbard Brook Experimental Forest, New Hampshire, USA and analyzed how these signals have changed over time. Variables were collected over periods from 25 to 55 years from both experimentally manipulated and reference areas and were aggregated to annual timesteps for analysis. Long-term (>50 year) increases in early warning signals of stream calcium, a key biogeochemical variable at the site, illustrated declining resilience after decades of acid deposition, but only in watersheds that had previously been harvested. Trends in early warning signals of stream nitrate, a critical nutrient and water pollutant, likewise exhibited symptoms of declining resilience but in all watersheds. Temporal trends in early warning signals of some of groups of trees, insects, and birds also indicated changing resilience, but this pattern differed among, and even within, groups. Overall, ∼60% of early warning signals analyzed indicated decreasing resilience. Most of these signals occurred in skewness and kurtosis, suggesting ‘flickering’ behavior that aligns with emerging evidence of the forest transitioning into an oligotrophic condition. The other ∼40% of early warning signals indicated increasing or unchanging resilience. Interpretation of early warning signals in the context of system specific knowledge is therefore essential. They can be useful indicators for some key ecosystem variables; however, uncertainties in other variables highlight the need for further development of these tools in well-studied, long-term research sites.more » « less
-
Power outage prediction is important for planning electric power system response, restoration, and maintenance efforts. It is important for utility managers to understand the impact of outages on the local distribution infrastructure in order to develop appropriate maintenance and resilience measures. Power outage prediction models in literature are often limited in scope, typically tailored to model extreme weather related outage events. While these models are sufficient in predicting widespread outages from adverse weather events, they may fail to capture more frequent, non-weather related outages (NWO). In this study, we explore time series models of NWO by incorporating state-of-the-art techniques that leverage the Prophet model in Bayesian optimization and hierarchical forecasting. After defining a robust metric for NWO (non-weather outage count index, NWOCI), time series forecasting models that leverage advanced preprocessing and forecasting techniques in Kats and Prophet, respectively, were built and tested using six years of daily state- and county-level outage data in Massachusetts (MA). We develop a Prophet model with Bayesian True Parzen Estimator optimization (Prophet-TPE) using state-level outage data and a hierarchical Prophet-Bottom-Up model using county-level data. We find that these forecasting models outperform other Bayesian and hierarchical model combinations of Prophet and Seasonal Autoregressive Integrated Moving Average (SARIMA) models in predicting NWOCI at both county and state levels. Our time series trend decomposition reveals a concerning trend in the growth of NWO in MA. We conclude with a discussion of these observations and possible recommendations for mitigating NWO.more » « less
An official website of the United States government
