Catastrophic accidents caused by fatigue failures often occur in engineering structures. Thus, a fundamental understanding of cyclic-deformation and fatigue-failure mechanisms is critical for the development of fatigue-resistant structural materials. Here we report a high-entropy alloy with enhanced fatigue life by ductile-transformable multicomponent B2 precipitates. Its cyclic-deformation mechanisms are revealed by real-time in-situ neutron diffraction, transmission-electron microscopy, crystal-plasticity modeling, and Monte-Carlo simulations. Multiple cyclic-deformation mechanisms, including dislocation slips, precipitation strengthening, deformation twinning, and reversible martensitic phase transformation, are observed in the studied high-entropy alloy. Its improved fatigue performance at low strain amplitudes, i.e., the high fatigue-crack-initiation resistance, is attributed to the high elasticity, plastic deformability, and martensitic transformation of the B2-strengthening phase. This study shows that fatigue-resistant alloys can be developed by incorporating strengthening ductile-transformable multicomponent intermetallic phases.
more » « less- NSF-PAR ID:
- 10249072
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage.more » « less
-
Abstract Multicomponent high‐entropy alloys (HEAs) can be tuned to a simple phase with some unique alloy characteristics. HEAs with body‐centered‐cubic (BCC) or hexagonal‐close‐packed (HCP) structures are proven to possess high strength and hardness but low ductility. The faced‐centered‐cubic (FCC) HEAs present considerable ductility, excellent corrosion and radiation resistance. However, their strengths are relatively low. Therefore, the strategy of strengthening the ductile FCC matrix phase is usually adopted to design HEAs with excellent performance. Among various strengthening methods, precipitation strengthening plays a dazzling role since the characteristics of multiple principal elements and slow diffusion effect of elements in HEAs provide a chance to form fine and stable nanoscale precipitates, pushing the strengths of the alloys to new high levels. This paper summarizes and review the recent progress in nanoprecipitate‐strengthened HEAs and their strengthening mechanisms. The alloy‐design strategies and control of the nanoscale precipitates in HEAs are highlighted. The future works on the related aspects are outlined.
-
Abstract A face-centered-cubic (fcc) oriented FeCoCrNiAl0.5dual-phase high entropy alloy (HEA) was plastically strained in uniaxial compression at 77K and 293K and the underlying deformation mechanisms were studied. The undeformed microstructure consists of a body-centered-cubic (bcc)/B2 interdendritic network and precipitates embedded in 〈001〉-oriented fcc dendrites. In contrast to other dual-phase HEAs, at both deformation temperatures a steep rise in the stress-strain curves occurs above 23% total axial strain. As a result, the hardening rate associated saturates at the unusual high value of ~6 GPa. Analysis of the strain partitioning between fcc and bcc/B2 by digital image correlation shows that the fcc component carries the larger part of the plastic strain. Further, electron backscatter diffraction and transmission electron microscopy evidence ample fcc deformation twinning both at 77K and 293K, while slip activity only is found in the bcc/B2. These results may guide future advancements in the design of novel alloys with superior toughening characteristics.
-
SUMMARY Cyclic loading at elevated temperatures occurs either naturally during tectonic or volcanic-induced earthquakes or can be human-induced due to various geological engineering activities. The aim of this study is to test if mechanical fatigue in rocks can be monitored by magnetic methods. For this purpose, the effect of cyclic-mechanical loading (150 ± 30 MPa) on the magnetic susceptibility and its anisotropy of a magnetite-bearing ore with varying temperatures (400 and 500 °C) and environment (air and vacuum) was investigated. Our study shows that magnetic susceptibility decreases significantly (up to 23 per cent) under air conditions and in vacuum (up to 4 per cent) within the first ca. 1000 cycles. Further loading does not significantly affect the magnetic susceptibility which then remains more or less constant. The decrease of susceptibility parameters is stronger at 500 °C compared to 400 °C under both experimental conditions. Magnetic susceptibility was always measured after decompression of the loaded sample at room temperature so that magnetostriction can be excluded as a reason for these changes. The higher the temperature at which samples were loaded the more pronounced is the oxidation of magnetite to haematite. The transformation of magnetite into haematite under ambient conditions is the most important mechanism influencing bulk magnetic properties. The weak changes in magnetic susceptibility after vacuum loadings are probably caused by intragranular microcracks formed on the surface of magnetite grains. These surface deformation structures are accompanied by the refinement of magnetic domains, which is observed by magnetic force microscopy. Bulk magnetic grain size modifications are also confirmed by hysteresis parameters as well as by the increasing Hopkinson peak ratios determined from magnetic susceptibility measurements over Curie point. The degree of magnetic anisotropy and shape factor only change for the air-treated samples and are therefore related to the haematite formation and not to irreversible ductile deformation in magnetite. Our experimental study shows that cyclic loading can change significantly the magnetic properties of a rock due to mineral transformation below < 1000 cycles and that the first stages of mechanical fatigue, which are a precursor of the failure of rock, are closely associated with these transformations.more » « less
-
Abstract Fatigue failure of metallic structures is of great concern to industrial applications. A material will not be practically useful if it is prone to fatigue failures. To take the advantage of lately emerged high-entropy alloys (HEAs) for designing novel fatigue-resistant alloys, we compiled a fatigue database of HEAs from the literature reported until the beginning of 2022. The database is subdivided into three categories, i.e., low-cycle fatigue (LCF), high-cycle fatigue (HCF), and fatigue crack growth rate (FCGR), which contain 15, 23, and 28 distinct data records, respectively. Each data record in any of three categories is characteristic of a summary, which is comprised of alloy compositions, key fatigue properties, and additional information influential to, or interrelated with, fatigue (e.g., material processing history, phase constitution, grain size, uniaxial tensile properties, and fatigue testing conditions), and an individual dataset, which makes up the original fatigue testing curve. Some representative individual datasets in each category are graphically visualized. The dataset is hosted in an open data repository, Materials Cloud.