skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polarization-driven catalysis via ferroelectric oxide surfaces
The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields ( e.g. , temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO 3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NO x direct decomposition and SO 2 oxidation into SO 3 . The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations.  more » « less
Award ID(s):
0821132
PAR ID:
10249154
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
18
Issue:
29
ISSN:
1463-9076
Page Range / eLocation ID:
19676 to 19695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ferroelectric materials such as barium titanate (BaTiO3) have a wide range of applications in nano scale electronic devices due to their outstanding properties. In this study, we developed an easily extendable atomistic ReaxFF reactive force field for BaTiO3 that can capture both its field- as well as temperature-induced ferroelectric hysteresis and corresponding changes due to surface chemistry and bulk defects. Using our force field, we were able to reproduce and explain a number of experimental observations: (1) existence of a critical thickness of 4.8 nm below which ferroelectricity vanishes in BaTiO3; (2) migration and clustering of oxygen vacancies (OVs) in BaTiO3 and reduction in the polarization and the curie temperature due to the OVs; (3) domain wall interaction with surface chemistry to influence ferroelectric switching and polarization magnitude. This new computational tool opens up a wide range of possibilities for making predictions for realistic ferroelectric interfaces in energy-conversion, electronic and neuromorphic systems. 
    more » « less
  2. Abstract The ability to produce atomically precise, artificial oxide heterostructures allows for the possibility of producing exotic phases and enhanced susceptibilities not found in parent materials. Typical ferroelectric materials either exhibit large saturation polarization away from a phase boundary or large dielectric susceptibility near a phase boundary. Both large ferroelectric polarization and dielectric permittivity are attained wherein fully epitaxial (PbZr0.8Ti0.2O3)n/(PbZr0.4Ti0.6O3)2n(n= 2, 4, 6, 8, 16 unit cells) superlattices are produced such that the overall film chemistry is at the morphotropic phase boundary, but constitutive layers are not. Long‐ (n≥ 6) and short‐period (n= 2) superlattices reveal large ferroelectric saturation polarization (Ps= 64 µC cm−2) and small dielectric permittivity (εr≈ 400 at 10 kHz). Intermediate‐period (n= 4) superlattices, however, exhibit both large ferroelectric saturation polarization (Ps= 64 µC cm−2) and dielectric permittivity (εr= 776 at 10 kHz). First‐order reversal curve analysis reveals the presence of switching distributions for each parent layer and a third, interfacial layer wherein superlattice periodicity modulates the volume fraction of each switching distribution and thus the overall material response. This reveals that deterministic creation of artificial superlattices is an effective pathway for designing materials with enhanced responses to applied bias. 
    more » « less
  3. Abstract Ferroelectric materials are characterized by the spontaneous polarization switchable by the applied fields, which can act as a “gate” to control various properties of ferroelectric/insulator interfaces. Here we review the recent studies on the modulation of oxide hetero-/homo-interfaces by ferroelectric polarization. We discuss the potential applications of recently developed four-dimensional scanning transmission electron microscopy and how it can provide insights into the fundamental understanding of ferroelectric polarization-induced phenomena and stimulate future computational studies. Finally, we give the outlook for the potentials, the challenges, and the opportunities for the contribution of materials computation to future progress in the area. 
    more » « less
  4. Abstract The discovery of polar vortices and skyrmions in ferroelectric‐dielectric superlattices [such as (PbTiO3)n/(SrTiO3)n] has ushered in an era of novel dipolar topologies and corresponding emergent phenomena. The key to creating such emergent features has generally been considered to be related to counterpoising strongly polar and non‐polar materials thus creating the appropriate boundary conditions. This limits the utility these materials can have, however, by rendering (effectively) half of the structure unresponsive to applied stimuli. Here, using advanced thin‐film deposition and an array of characterization and simulation approaches, polar vortices are realized in all‐ferroelectric trilayers, multilayers, and superlattices built from the fundamental building block of (PbTiO3)n/(PbxSr1−xTiO3)nwherein in‐plane ferroelectric polarization in the PbxSr1−xTiO3provides the appropriate boundary conditions. These superlattices exhibit substantially enhanced electromechanical and ferroelectric responses in the out‐of‐plane direction that arise from the ability of the polarization in both layers to rotate to the out‐of‐plane direction under field. In the in‐plane direction, the layers are found to be strongly coupled during switching and when heterostructured with ferroelectric‐dielectric building blocks, it is possible to produce multistate switching. This approach expands the realm of systems supporting emergent dipolar texture formation and does so with entirely ferroelectric materials thus greatly improving their responses. 
    more » « less
  5. The nature of superconductivity in SrTiO 3 , the first oxide superconductor to be discovered, remains a subject of intense debate several decades after its discovery. SrTiO 3 is also an incipient ferroelectric, and several recent theoretical studies have suggested that the two properties may be linked. To investigate whether such a connection exists, we grew strained, epitaxial SrTiO 3 films, which are known to undergo a ferroelectric transition. We show that, for a range of carrier densities, the superconducting transition temperature is enhanced by up to a factor of two compared to unstrained films grown under the same conditions. Moreover, for these films, superconductivity emerges from a resistive state. We discuss the localization behavior in the context of proximity to ferroelectricity. The results point to new opportunities to enhance superconducting transition temperatures in oxide materials. 
    more » « less