Abstract Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuIcomplex on Cu0electrodes. Additionally, Cu0served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuIactivator through a comproportionation reaction. We harnessed the distinct properties of Cu0dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square‐wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low‐activity Cu/2,2‐bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain‐end fidelity of the produced polymers, yielding functional and high molecular‐weight block copolymers. SEM analysis indicated the robustness of the Cu0electrodes, sustaining at least 15 consecutive polymerizations. 
                        more » 
                        « less   
                    
                            
                            Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride
                        
                    
    
            The stringent control over the polymerization of less activated monomers remains one major challenge for Reversible Deactivation Radical Polymerizations (RDRP), including Atom Transfer Radical Polymerization (ATRP). Electrochemically mediated ATRP ( e ATRP) of a gaseous monomer, vinyl chloride (VC), was successfully achieved for the first time using a stainless-steel 304 (SS304) electrochemical reactor equipped with a simplified electrochemical setup. Controlled polymerizations were confirmed by the good agreement between theoretical and measured molecular weights, as well as the relatively narrow molecular weight distributions. Preservation of chain-end fidelity was verified by chain extension experiments, yielding poly(vinyl chloride) (PVC) homopolymers, block and statistical copolymers. The possibility of synthesizing PVC by e ATRP is a promising alternative to afford cleaner (co)polymers, with low catalyst concentration. The metal body of the reactor was also successfully used as a cathode. The setup proposed in this contribution opens an avenue for the polymerization of other gaseous monomers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2000391
- PAR ID:
- 10249193
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 11
- Issue:
- 42
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 6745 to 6762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) withn‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 376–381more » « less
- 
            Abstract A versatile synthetic platform is reported that affords high molecular weight graft copolymers containing polydimethylsiloxane (PDMS) backbones and vinyl‐based polymer side chains with excellent control over molecular weight and grafting density. The synthetic approach leverages thiol‐ene click chemistry to attach an atom‐transfer radical polymerization (ATRP) initiator to a variety of commercially available poly(dimethylsiloxane‐co‐methylvinylsiloxane) backbones (PDMS‐co‐PVMS), followed by controlled radical polymerization with a wide scope of vinyl monomers. Selective degradation of the siloxane backbone with tetrabutylammonium fluoride confirmed the controlled nature of side‐chain growth via ATRP, yielding targeted side‐chain lengths for copolymers containing up to 50% grafting density and overall molecular weights in excess of 1 MDa. In addition, by using a mixture of thiols, grafting density and functionality can be further controlled by tuning initiator loading along the backbone. For example, solid‐state fluorescence of the graft copolymers was achieved by incorporating a thiol‐containing fluorophore along the siloxane backbone during the thiol‐ene click reaction. This simple synthetic platform provides facile control over the properties of a wide variety of grafted copolymers containing flexible PDMS backbones and vinyl polymer side chains.more » « less
- 
            Abstract A dual‐concurrent atom transfer radical polymerization/reversible addition‐fragmentation chain‐transfer (ATRP/RAFT) system is used to control a radical polymerization by electrochemical reduction of small amount of copper complexes in the presence of a chain transfer agent (CTA). Electrochemical ATRP conditions provide a continuous supply of radicals, while the CTA aids the control over molecular weight and dispersity of poly(n‐butyl acrylate), even in the presence of low ppm amounts of catalyst. The polymerization could be turned “on” and “off” by shifting electrolysis potential. With as low as 10 ppm of Cu catalyst, addition of only 2% CTA (with respect to the ATRP initiator) improves control by decreasing dispersity fromÐ= 1.41 toÐ= 1.25.more » « less
- 
            Abstract Frontal polymerization (FP) of epoxy monomers is typically achieved with a radical‐induced cationic frontal polymerization (RICFP) process that combines a thermal radical initiator with an onium salt superacid generator. In this paper, we show that both thermal and UV‐initiated cationic frontal polymerizations are possible for common epoxy and vinyl ether monomers with only an iodonium superacid generator in the absence of a standalone thermal radical initiator. Increasing superacid generator concentration resulted in an increase in front velocity, as did the addition of vinyl ether to epoxies. The front velocity is reduced by the addition of 4‐methoxyphenol (MeHQ), indicating free‐radicals play a significant role.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    