skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anodic Olefin Coupling Reactions: Elucidating Radical Cation Mechanisms and the Interplay between Cyclization and Second Oxidation Steps
Abstract Anodic olefin coupling reactions generate new bonds and ring skeletons through a net two electron process that reverses the polarity of a known, electron‐rich functional group. While much of the early work on the mechanism of these reactions focused on the initial oxidation and cyclization steps of the process, the second oxidation step also plays a central role in determining the success of the reaction. Evidence supporting this observation is presented, along with evidence that optimization of this second oxidation step is not enough to pull a poor cyclization to the desired product. Successful cyclization reactions require optimization of both processes.  more » « less
Award ID(s):
1764449
PAR ID:
10249304
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Chemical Record
Volume:
21
Issue:
9
ISSN:
1527-8999
Page Range / eLocation ID:
p. 2442-2452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radical cation initiated cyclization reactions can be triggered by the one electron oxidation of an electron-rich olefin using either electrochemistry or visible light and a photoredox catalyst. In principle, the two methods can be used to give complimentary products with the electrolysis leading to products derived from a net two electron oxidation and the photoelectron transfer method being compatible with the formation of products from a redox neutral process. However, we are finding an increasing number of oxidative cyclization reactions that require the rapid removal of a second electron in order to form high yields of the desired product. In those cases, the electrochemical method can provide a superior approach to accessing the necessary two electron oxidation pathway. With that said, it is a combination of the two methods that provides the mechanistic insight needed to understand when a reaction has this requirement, and we are finding that the use of photoredox catalysis in combination with electrochemical methods is changing our understanding of even the most successful anodic cyclization reactions run to date. 
    more » « less
  2. The base-catalyzed addition of 1-cyclopropylethanol to styrene derivatives with an acidic reaction workup enables anti-Markovnikov hydration. The use of either catalytic organic superbase or crown ether-ligated inorganic base permits hydration of a wide variety of styrene derivatives, including electron-deficient, ortho -substituted and heteroaryl variants. This protocol complements alternative routes to terminal alcohols that rely on stoichiometric reduction and oxidation processes. The utility of this method is demonstrated through multigram scale reactions and its use in a two-step hydration/cyclization process of ortho -halogenated styrenes to prepare 2,3-dihydrobenzofuran derivatives. 
    more » « less
  3. Abstract Electrochemical oxidant regeneration is challenging in reactions that have a slow redox step because the steady‐state concentration of the reduced oxidant is low, causing difficulties in maintaining sufficient current or preventing potential spikes. This work shows that applying an understanding of the relationship between intermediate cation stability, oxidant strength, overpotential, and concentration on reaction kinetics delivers a method for electrochemical oxoammonium ion regeneration in hydride abstraction‐initiated cyclization reactions, resulting in the development of an electrocatalytic variant of a process that has a high oxidation transition state free energy. This approach should be applicable to expanding the scope of electrocatalysis to include additional slow redox processes. 
    more » « less
  4. Abstract Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non‐electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined. 
    more » « less
  5. Abstract A cobaloxime‐catalyzed acceptorless dehydrogenative cyclization ofo‐teraryls was developed. In stark contrast to the established methods such as the Scholl or Mallory reactions, this method does not require any strong acids or oxidants, and shows high atom economy and a broad substrate scope. It operates at near room temperature with light as the source of energy. Acid‐ or oxidant‐sensitive functional groups, such as 4‐methoxyphenyl, unprotected benzyl alcohol, silyl ether, and thiophene groups are tolerated. Remarkably, aryls with electron‐withdrawing groups, and electron‐poor heteroarenes, such as pyridine and pyrimidine, can also react. Preliminary mechanistic study reveals that hydrogen gas is released during the reaction, and both light and the cobalt catalyst are important for the dehydrogenation step. 
    more » « less