skip to main content

Title: Predicting Public Transportation Load to Estimate the Probability of Social Distancing Violations
Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes (a) proactive fixed-line schedule optimization based on predicted demand, (b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and (c) allocation of more » vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (i.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
2029952
Publication Date:
NSF-PAR ID:
10249350
Journal Name:
Proceedings of the Workshop on AI for Urban Mobility at the 35th AAAI Conference on Artificial Intelligence
Sponsoring Org:
National Science Foundation
More Like this
  1. Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary tomore »improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes \textit(a) proactive fixed-line schedule optimization based on predicted demand, \textit(b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and \textit(c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (\textiti.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.« less
  2. Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presentsmore »a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city.« less
  3. Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presentsmore »a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city.« less
  4. Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presentsmore »a dynamic simulation platform, called \textsc{Transit-Gym}, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city.« less
  5. Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishingmore »returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure.« less