skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxygen-atom vacancy formation and reactivity in polyoxovanadate clusters
Reducible metal oxides (RMOs) are widely used materials in heterogeneous catalysis due to their ability to facilitate the conversion of energy-poor substrates to energy-rich chemical fuels and feedstocks. Theoretical investigations have modeled the role of RMOs in catalysis and found they traditionally follow a mechanism in which the generation of oxygen-atom vacancies is crucial for the high activity of these solid supports. However, limited spectroscopic techniques for in situ analysis renders the identification of the reactivity of individual oxygen-atom vacancies on RMOs challenging. These obstacles can be circumvented through the use of homogeneous complexes as molecular models for metal oxides, such as polyoxometalates. Summarized herein, a sub-class of polyoxometalates, polyoxovanadate–alkoxide clusters, ([V 6 O 7 (OR) 12 ] n ; R = CH 3 , C 2 H 5 ; n = 2−, 1−, 0), are explored as homogeneous molecular models for bulk vanadium oxide. A series of synthetic strategies have been employed to access oxygen-deficient vanadium oxide assemblies, including addition of V(Mes) 3 (thf), tertiary phosphanes, and organic acids to plenary Lindqvist motifs. We further detail investigations surrounding the ability of these oxygen-deficient sites to mediate reductive transformations such as O 2 and NO x 1− ( x = 2, 3) activation.  more » « less
Award ID(s):
1653195
PAR ID:
10249411
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
88
ISSN:
1359-7345
Page Range / eLocation ID:
13477 to 13490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anionic dopants, such as O-atom vacancies, alter the thermochemical and kinetic parameters of proton coupled electron transfer (PCET) at metal oxide surfaces; understanding their impact(s) is essential for informed material design for efficient energy conversion processes. To circumvent challenges associated with studying extended solids, we employ polyoxovanadate–alkoxide clusters as atomically precise models of reducible metal oxide surfaces. In this work, we examine net hydrogen atom (H-atom) uptake to an oxygen deficient vanadium oxide assembly, [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 . Addition of two H-atom equivalents to [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 results in formation of [V 6 O 5 (MeCN)(OH 2 )(OCH 3 ) 12 ] 0 . Assessment of the bond dissociation free energy of the O–H bonds of the resultant aquo moiety reveals that the presence of an O-atom defect weakens the O–H bond strength. Despite a decreased thermodynamic driving force for the reduction of [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 , kinetic investigations show the rate of H-atom uptake at the cluster surface is ∼100× faster than its oxidized congener, [V 6 O 7 (OCH 3 ) 12 ] 0 . Electron density derived from the O-atom vacancy is shown to play an important role in influencing H-atom uptake at the cluster surface, lowering activation barriers for H-atom transfer. 
    more » « less
  2. Here, we present the first example of reductive silylation for oxygen defect formation at the surface of a polyoxometalate. Upon addition of 1,4-bis(trimethylsilyl)dihydropyrazine (Pyz(SiMe 3 ) 2 ) to [V 6 O 7 (OMe) 12 ] 1− , quantitative formation of the oxygen-deficient vanadium oxide assembly, [V 6 O 6 (OMe) 12 ] 1− was observed. Substoichiometric reactions of Pyz(SiMe 3 ) 2 with the parent cluster revealed the mechanism of defect formation; addition of 0.5 equiv. of Pyz(SiMe 3 ) 2 to [V 6 O 7 (OMe) 12 ] 1− results in isolation of [V 6 O 6 (OSiMe 3 )(OMe) 12 ] 1− . This reactivity was extended to reduced and oxidized forms of the cluster, [V 6 O 7 (OMe) 12 ] n ( n = 2-, 0), revealing the consequences of modifying the oxidation states of remote transition metal ions on the stability of the siloxide functional group, and thus the extent of reactivity of the cluster surface with Pyz(SiMe 3 ) 2 . The work offers a new understanding of the mechanisms of surface activation of reducible metal oxides via reductive silylation, and reveals new chemical routes for the formation of oxygen atom vacancies in polyoxometalate ions. 
    more » « less
  3. Here, we present the first example of acid-induced, oxygen-atom abstraction from the surface of a polyoxometalate cluster. Generation of the oxygen-deficient vanadium oxide, [V6O6(OC2H5)12]1−, was confirmed via independent synthesis. Spectroscopic analysis using infrared and electronic absorption spectroscopies affords resolution of the electronic structure of the oxygen-deficient cluster (oxidation state distribution = [VIIIVIV 5]). This work has direct implications toward the elucidation of possible mechanisms of acid-assisted vacancy formation in bulk transition metal oxides, in particular electron−proton codoping that has recently been described for vanadium oxide (VO2). Ultimately, these molecular models deepen our understanding of protondependent redox chemistry of transition metal oxide surfaces. 
    more » « less
  4. Here, we expand on the synthesis and characterization of chloride-functionalized polyoxovanadate-alkoxide (POV-alkoxide) clusters, to include the halogenation of mixed-valent vanadium oxide assemblies. These findings build on our previously disclosed results describing the preparation of a mono-anionic chloride-functionalized cluster, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] 1− , by chlorination of [V 6 O 7 (OC 2 H 5 ) 12 ] 2− with AlCl 3 , aimed at understanding the electronic consequences of the introduction of halide-defects in bulk metal oxides ( e.g. VO 2 ). While chlorination of the mixed-valent POV-ethoxide clusters was not possible using AlCl 3 , we have found that the chloride-substituted oxidized derivatives of the Lindqvist vanadium-oxide clusters can be formed using TiCl 3 (thf) 3 with [V 6 O 7 (OC 2 H 5 ) 12 ] n ( n = 1−, 0) or WCl 6 with [V 6 O 7 (OC 2 H 5 ) 12 ] 0 . Characterization of the chloride-containing products, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] n ( n = 0, 1+), was accomplished via 1 H NMR spectroscopy, X-ray crystallography, and elemental analysis. Electronic analysis of the redox series of Cl-doped POV-alkoxide clusters via infrared and electronic absorption spectroscopies revealed all redox events are localized to the vanadyl portion of the cluster, with the site differentiated V III –Cl moiety retaining its reduced oxidation state across a 1.9 V window. These results present new synthetic routes for accessing chloride-doped POV-alkoxide clusters from mixed-valent vanadium oxide precursors. 
    more » « less
  5. Abstract Oxide heterostructures exhibit a vast variety of unique physical properties. Examples are unconventional superconductivity in layered nickelates and topological polar order in (PbTiO3)n/(SrTiO3)nsuperlattices. Although it is clear that variations in oxygen content are crucial for the electronic correlation phenomena in oxides, it remains a major challenge to quantify their impact. Here, we measure the chemical composition in multiferroic (LuFeO3)9/(LuFe2O4)1superlattices, mapping correlations between the distribution of oxygen vacancies and the electric and magnetic properties. Using atom probe tomography, we observe oxygen vacancies arranging in a layered three-dimensional structure with a local density on the order of 1014 cm−2, congruent with the formula-unit-thick ferrimagnetic LuFe2O4layers. The vacancy order is promoted by the locally reduced formation energy and plays a key role in stabilizing the ferroelectric domains and ferrimagnetism in the LuFeO3and LuFe2O4layers, respectively. The results demonstrate pronounced interactions between oxygen vacancies and the multiferroic order in this system and establish an approach for quantifying the oxygen defects with atomic-scale precision in 3D, giving new opportunities for deterministic defect-enabled property control in oxide heterostructures. 
    more » « less