skip to main content


Title: Body and Wing Allometries Reveal Flight-Fecundity Tradeoff in Response to Larval Provisioning in Osmia lignaria (Hymenoptera: Megachilidae)
Abstract Variation in body size has important implications for physical performance and fitness. For insects, adult size and morphology are determined by larval growth and metamorphosis. Female blue orchard bees, Osmia lignaria, (Say) provision a finite quantity of food to their offspring. In this study, we asked how provision-dependent variation in size changes adult morphology. We performed a diet manipulation in which some larvae were starved in the final instar and some were given unlimited food. We examined the consequences on adult morphology in two ways. First, allometric relationships between major body regions (head, thorax, abdomen) and total body mass were measured to determine relative growth of these structures. Second, morphometrics that are critical for flight (wing area, wing loading, and extra flight power index) were quantified. Head and thorax mass had hyperallometric relationships with body size, indicating these parts become disproportionately large in adults when larvae are given copious provisions. However, abdominal mass and wing area increased hypoallometrically with body size. Thus, large adults had disproportionately lighter abdomens and smaller wing areas than smaller adults. Though both males and females followed these general patterns, allometric patterns were affected by sex. For flight metrics, small adults had reduced wing loading and an increased extra flight power index. These results suggest that diet quantity alters development in ways that affect the morphometric trait relationships in adult O. lignaria and may lead to functional differences in performance.  more » « less
Award ID(s):
1557940 1826834
NSF-PAR ID:
10249415
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
O’Donnell, Sean
Date Published:
Journal Name:
Journal of Insect Science
Volume:
21
Issue:
3
ISSN:
1536-2442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Burghardt, G.M. (Ed.)

    Several species of stalk-eyed flies exhibit exaggerated sexual dimorphism where females favor males with longer eyespans. Longer eyespan increases a fly’s moment of inertia, and may, therefore, impact flight behavior and fitness, specifically maneuverability and predator evasion. However, these putative costs may be ameliorated by co-selection for compensatory traits, as flies with longer eyespans tend to have larger thoraces and wings, which allows them to perform turns similar to flies with shorter eyespans. Furthermore, the capacity to compensate for a potentially costly ornament may not be fixed across the life-history of the adult stage, as stalk-eyed flies achieve sexual maturity at 3-4 weeks of age, accompanied by significant growth of reproductive tissues and organs. Thus, growth of the abdomen and body mass over time may impose constraints on flight performance that may affect whether an adult reaches the age of reproductive viability. The purpose of this study was to investigate the flight performance of stalk-eyed flies and its relationship to body morphology and development. The flight performance of 1-to-30 day oldTeleopsis dalmanni(n=124) andDiasemopsis meigenii(n=83) were assessed by presenting normoxic, variable-density mixtures of heliox (O2, N2and He) in 10% increments ranging from air to pure heliox; the least-dense gas allowing flight represented maximal performance. Flight kinematics were analyzed using high-speed (5930fps) videography. Immediately following flight assessment, flies were euthanized, photographed, dissected and weighed. In both species, total body mass, thorax and abdominal mass increased across age. Wing kinematics and maximal flight capacity were associated with thorax mass, and increased with age as flies became heavier. Although flies with longer eyespans were indeed heavier, they had larger wings and thoraces; however, maximal flight capacity and kinematics were generally independent of eyespan. Thus, bearing long eye-stalks did not impair flight performance, nor did the increase in mass attributable to reproductive maturation. Instead, variation in flight performance appears associated with the development of the flight motor, and improved ratio of thorax-to-total mass, across age.

     
    more » « less
  2. Abstract

    Environmental heterogeneity in temperate latitudes is expected to maintain seasonally plastic life‐history strategies that include the tuning of morphologies and metabolism that support overwintering. For species that have expanded their ranges into tropical latitudes, it is unclear the extent to which the capacity for plasticity will be maintained or will erode with disuse. The migratory generations of the North American (NA) monarch butterflyDanaus plexippuslead distinctly different lives from their summer generation NA parents and their tropical descendants living in Costa Rica (CR). NA migratory monarchs postpone reproduction, travel thousands of kilometers south to overwinter in Mexico, and subsist on little food for months. Whether recently dispersed populations of monarchs such as those in Costa Rica, which are no longer subject to selection imposed by migration, retain ancestral seasonal plasticity is unclear. To investigate the differences in seasonal plasticity, we reared the NA and CR monarchs in summer and autumn in Illinois, USA, and measured the seasonal reaction norms for aspects of morphology and metabolism related to flight. NA monarchs were seasonally plastic in forewing and thorax size, increasing wing area and thorax to body mass ratio in autumn. While CR monarchs increased thorax mass in autumn, they did not increase the area of the forewing. NA monarchs maintained similar resting and maximal flight metabolic rates across seasons. However, CR monarchs had elevated metabolic rates in autumn. Our findings suggest that the recent expansion of monarchs into habitats that support year‐round breeding may be accompanied by (1) the loss of some aspects of morphological plasticity as well as (2) the underlying physiological mechanisms that maintain metabolic homeostasis in the face of temperature heterogeneity.

     
    more » « less
  3. Animals with biphasic lifecycles often inhabit different visual environments across ontogeny. Many frogs and toads (Amphibia: Anura) have free-living aquatic larvae (tadpoles) that metamorphose into adults that inhabit a range of aquatic and terrestrial environments. Ecological differences influence eye size across species, but these relationships have not yet been explored across life stages in an ontogenetic allometric context. We examined eye-body size scaling in a species with aquatic larvae and terrestrial adults, the common frog Rana temporaria, using a well-sampled developmental series. We found a shift in ontogenetic allometric trajectory near metamorphosis indicating prioritized growth in tadpole eyes. To explore the effects of different tadpole and adult ecologies on eye-body scaling, we expanded our taxonomic sampling to include developmental series of eleven additional anuran species. Intraspecific eye-body scaling was variable among species, with 8/12 species exhibiting a significant change in allometric slope between tadpoles and adults. Traits categorizing both tadpole ecology (microhabitat, eye position, mouth position) and adult ecology (habitat, activity pattern) across species had significant effects on allometric slopes among tadpoles, but only tadpole eye position had a significant effect among adults. Our study suggests that relative eye growth in the preliminary stages of biphasic anuran ontogenies is somewhat decoupled and may be shaped by both immediate ecological need (i.e. tadpole visual requirements) and what will be advantageous during later adult stages. 
    more » « less
  4. Abstract

    Stressful juvenile developmental conditions can affect performance and fitness later in life. In holometabolous insects such as butterflies, development under stressful conditions may lead to smaller adult size, lower reproductive output, and shorter lifespan. However, how larval developmental stress affects energy intake and expenditure in adult individuals is poorly understood.

    We subjected last‐instar larvae ofSpeyeria mormoniaEdwards (Lepidoptera: Nymphalidae) to periodic dietary restriction (DR) to examine the allocation of energy and nutrients among different life history processes. We measured adult food intake, resting metabolic rate (RMR), metabolic flight capacity, lifespan, and reproductive output. Consistent with pressure to disperse from a poor environment while maintaining offspring number, we predicted that stressed individuals would have increased adult food intake and higher flight capacity.

    Adult body size was strongly reduced. Contrary to predictions, we found no compensatory adult feeding. Mass‐adjusted flight metabolic rate was reduced, suggesting poor dispersal capacity. Larval DR did not affect adult lifespan, nor did the rate of metabolic senescence change. Larval DR did affect RMR, as stressed females had a steeper slope between RMR and body mass, which may reflect differences in physiological activity due to condition.

    Fecundity decreased less than predicted based on body mass. Instead of investing in flight capacity, females increased relative allocation to reproduction, which may partly buffer against poor environmental conditions.

    Understanding the interplay of energy acquisition and allocation to life history traits across the life cycle is vital for predicting responses to environmental change.

     
    more » « less
  5. In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diets are often complex and may interact with one another, necessitating the use of a geometric framework for elucidating nutritional effects. In the honey bee, Apis mellifera, nurse bees provision food to developing larvae, directly moderating growth rates and caste development. However, the eusocial nature of honey bees makes nutritional studies challenging, because diet components cannot be systematically manipulated in the hive. Using in vitro rearing, we investigated the roles and interactions between carbohydrate and protein content on larval survival, growth, and development in A. mellifera. We applied a geometric framework to determine how these two nutritional components interact across nine artificial diets. Honey bees successfully completed larval development under a wide range of protein and carbohydrate contents, with the medium protein (∼5%) diet having the highest survival. Protein and carbohydrate both had significant and non-linear effects on growth rate, with the highest growth rates observed on a medium-protein, low-carbohydrate diet. Diet composition did not have a statistically significant effect on development time. These results confirm previous findings that protein and carbohydrate content affect the growth of A. mellifera larvae. However, this study identified an interaction between carbohydrate and protein content that indicates a low-protein, high-carb diet has a negative effect on larval growth and survival. These results imply that worker recruitment in the hive would decline under low protein conditions, even when nectar abundance or honey stores are sufficient.

     
    more » « less