skip to main content


Title: A chip-less and battery-less subharmonic tag for wireless sensing with parametrically enhanced sensitivity and dynamic range
Abstract

Massive deployments of wireless sensor nodes (WSNs) that continuously detect physical, biological or chemical parameters are needed to truly benefit from the unprecedented possibilities opened by the Internet-of-Things (IoT). Just recently, new sensors with higher sensitivities have been demonstrated by leveraging advanced on-chip designs and microfabrication processes. Yet, WSNs using such sensors require energy to transmit the sensed information. Consequently, they either contain batteries that need to be periodically replaced or energy harvesting circuits whose low efficiencies prevent a frequent and continuous sensing and impact the maximum range of communication. Here, we report a new chip-less and battery-less tag-based WSN that fundamentally breaks any previous paradigm. This WSN, formed by off-the-shelf lumped components on a printed substrate, can sense and transmit information without any need of supplied or harvested DC power, while enabling full-duplex transceiver designs for interrogating nodes rendering them immune to their own self-interference. Also, even though the reported WSN does not require any advanced and expensive manufacturing, its unique parametric dynamical behavior enables extraordinary sensitivities and dynamic ranges that can even surpass those achieved by on-chip sensors. The operation and performance of the first implementation of this new WSN are reported. This device operates in the Ultra-High-Frequency range and is capable to passively and continuously detect temperature changes remotely from an interrogating node.

 
more » « less
Award ID(s):
1854573
NSF-PAR ID:
10360513
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wireless sensor nodes (WSNs) are useful to monitor animals remotely and continuously. The proposed WSN aims to monitor pig activities, and it consists of a 3-axis accelerometer, a 3-axis gyroscope, and a microcontroller with embedded BLE (Bluetooth Low Energy) radio. The WSN was designed and prototyped with a custom PCB and used to collect data from pigs in field for about 131 hours, and the collected data was processed to classify pig behaviors with machine learning models. The sampling rate of the sensors is 10 samples per second. The proposed WSN dissipates 6.29 mW, on average, and the peak power dissipation is 41.01 mW during transmission of the sensed data. The WSN is estimated to operate for about three weeks with a coin cell battery CR2477. 
    more » « less
  2. Abstract (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a nonbinary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R in {1.2. 3 ...}, encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented. 
    more » « less
  3. Advanced, superscalar microprocessors (μP) are highly susceptible to wear-out failures because of their highly complex, densely packed circuit structure and extreme operational frequencies. Although many types of fault detection and mitigation strategies have been proposed, none have addressed the specific problem of detecting faults that lead to information leakage events on I/O channels of the μP. Information leakage can be defined very generally as any type of output that the executing program did not intend to produce. In this work, we restrict this definition to output that represents a security concern, and in particular, to the leakage of plaintext or encryption keys, and propose a counter-based countermeasure to detect faults that cause this type of leakage event. Fault injection (FI) experiments are carried out on two RISC-V microprocessors emulated as soft cores on a Xilinx multi-processor System-on-chip (MPSoC) FPGA. The μP designs are instrumented with a set of counters that records the number of transitions that occur on internal nodes. The transition counts are collected from all internal nodes under both fault-free and faulty conditions, and are analyzed to determine which counters provide the highest fault coverage and lowest latency for detecting leakage faults. We show that complete coverage of all leakage faults is possible using only a single counter strategically placed within the branch compare logic of the μPs. 
    more » « less
  4. null (Ed.)
    Gliding birds perform feats that challenge even our most advanced similar-sized unmanned aerial vehicles (UAV). Their ostensible skill supports a pervasive belief that birds are highly efficient gliders that outperform modern UAVs. which led us to ask: are gliding birds truly more efficient than UAVs? Avian flight efficiency a well-studied topic and often cited as the inspiration for novel UAV designs. Despite the multitude of studies that have quantified the aerodynamic efficiency of gliding birds, there is no comprehensive summary of their findings. This is problematic because differing methodologies have inconsistent levels of uncertainty. As such, the lack of consolidated information on gliding bird efficiency inhibits a true comparison to UAVs. To fill this gap, we surveyed published theoretical and experimental estimates of avian aerodynamic efficiency and investigated the uncertainty of each method. We found that there was substantial variation in the aerodynamic efficiency predicted by different methods, which can lead to disparate conclusions on gliding bird efficiency. Our survey showed that measurements on live birds gliding in wind tunnels provide a reliable minimum estimate on a birds’ aerodynamic efficiency and allows the quantification of the wing configurations used in flight. Next, we surveyed the aeronautical literature to collect all published aerodynamic efficiencies of similar-sized, non-copter UAVs. The consolidated information allowed a direct comparison of modern UAVs and gliding birds. Contrary to our expectation, we found that there is no definitive evidence that any gliding bird species is either more or less efficient than a similar-sized UAV. This non-result highlights a critical need for new technology and analytical advances that can reduce the uncertainty associated with estimating a gliding bird’s aerodynamic efficiency. Nevertheless, our survey indicated that UAV designs informed by species flying within subcritical regimes may extend their operational range into lower Reynolds number regimes. 
    more » « less
  5. Many network/graph structures are continuously monitored by various sensors that are placed at a subset of nodes and edges. The multidimensional data collected from these sensors over time create large-scale graph data in which the data points are highly dependent. Monitoring large-scale attributed networks with thousands of nodes and heterogeneous sensor data to detect anomalies and unusual events is a complex and computationally expensive process. This paper introduces a new generic approach inspired by state-space models for network anomaly detection that can utilize the information from the network topology, the node attributes (sensor data), and the anomaly propagation sets in an integrated manner to analyze the entire network all at once. This article presents how heterogeneous network sensor data can be analyzed to locate the sources of anomalies as well as the anomalous regions in a network, which can be impacted by one or multiple anomalies at any time instance. Experimental results demonstrate the superior performance of our proposed framework in detecting anomalies in attributed graphs. Summary of Contribution: With the increasing availability of large-scale network sensors and rapid advances in artificial intelligence methods, fundamentally new analytical tools are needed that can integrate data collected from sensors across the networks for decision making while taking into account the stochastic and topological dependencies between nodes, sensors, and anomalies. This paper develops a framework to intelligently and efficiently analyze complex and highly dependent data collected from disparate sensors across large-scale network/graph structures to detect anomalies and abnormal behavior in real time. Unlike general purpose (often black-box) machine learning models, this paper proposes a unique framework for network/graph structures that incorporates the complexities of networks and interdependencies between network entities and sensors. Because of the multidisciplinary nature of the paper that involves optimization, machine learning, and system monitoring and control, it can help researchers in both operations research and computer science domains to develop new network-specific computing tools and machine learning frameworks to efficiently manage large-scale network data. 
    more » « less