skip to main content


Title: On a Possible Mechanism of Reactivation of Decayed Branches of Negative Stepped Leaders
Abstract

Using visible‐range and infrared (3–5 μm) high‐speed video cameras, we observed luminosity transients that reilluminated decayed branches of two close (2 to 4 km) negative stepped leaders in Florida. Leader branches were energized via stepping at their tips and, as a result, were most heated near their lower ends, with the hotter sections being connected via cooler sections to the trunk. In the modeling of lightning leaders, usually a single tip is considered. In contrast, in the present study, many (up to 30 per major branch) tips were active at the same time, forming a network‐like structure with a descending multitip “ionization front” whose transverse dimensions were of the order of hundreds of meters. The front exhibited alternating stepping, with each step necessarily generating a positive charge wave traveling from the leader tip up along the channel, like a mini return stroke. We inferred that the step‐related waves can cause luminosity transients in the remnants of decayed negative branches at higher altitudes. Such reactivated branches, in turn, may facilitate further leader stepping at lower altitudes, as first reported by Stolzenburg et al. (2015,https://doi.org/10.1002/2014JD022933). The reactivation process is likely to involve multiple steps, as evidenced by a large number of active tips (some tens per 50‐μs frame) and corresponding electric field pulses occurring at time intervals of 2 μs or less. Additionally, our observations suggest that a transient in one decayed branch can trigger (or assist with triggering of) a transient in another branch.

 
more » « less
Award ID(s):
1701484
NSF-PAR ID:
10449287
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
23
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Our basic knowledge of downward positive lightning leaders is incomplete due to their rarity and limited ability of VHF mapping systems to image positive streamers. Here, using high‐speed optical records and wideband electric field and magnetic field derivative signatures, we examine in detail the development of a descending positive leader, which extended intermittently via alternating branching at altitudes of 4.2 to 1.9 km and involved luminosity transients separated by millisecond‐scale quiet intervals. We show that the transients (a) are mostly initiated in previously created but already decayed branches, at a distance of the order of 100 m above the branch lower extremity, (b) extend bidirectionally with negative charge moving up, (c) establish a temporary (1 ms or so) steady‐current connection to the negative part of the overall bidirectional leader tree, and (d) exhibit brightening accompanied by new breakdowns at the positive leader end. One of the transients unexpectedly resulted in a negative cloud‐to‐ground discharge. Both positive and negative ends of the transients extended at speeds of 106–107 m/s, while the overall positive leader extension speed was as low as 103–104 m/s. Wideband electric field signatures of the transients were similar to K‐changes, with their millisecond‐ and microsecond‐scale features being associated with the steady current and new breakdowns, respectively. For transients with both ends visible in our optical records, charge transfers and average currents were estimated to be typically a few hundreds of millicoulombs and some hundreds of amperes, respectively.

     
    more » « less
  2. Abstract

    Using visible‐range and infrared (3–5 µm) high‐speed video cameras, we observed collisions of adjacent branches in downward negative stepped leaders. Typically, a lagging (chasing) branch (CB) approached a leading branch (LB) from aside at about 90° angle and connected to the lateral surface of the LB within some tens of meters or less of its tip. We infer that collisions can be facilitated by the attracting force of upward moving positive‐charge wave associated with stepping at the leading branch tip. Outcomes of branch collisions differ. The chasing branch may be absorbed by the LB, rebound, or temporarily bridge two branches. It appears that a heavily branched negative stepped leader creates a highly structured and rapidly changing electric field pattern inside the volume it occupies. We observed abrupt changes in the direction of branch extension, suggesting that the direction of local electric field can differ significantly from the ambient.

     
    more » « less
  3. Abstract

    A recent laboratory study suggests that water vapor displays structured absorption features over the 290–350 nm region, with maximum and minimum cross‐sections of 8.4 × 10−25and 1.4 × 10−25 cm2/molecule at room temperature (Pei et al. 2019,https://doi.org/10.1029/2019jd030724; Du et al., 2013,https://doi.org/10.1002/grl.50935). To observe water vapor absorption features in the ultraviolet (UV) region in the atmosphere, a United States Department of Agriculture reference spectroradiometer was upgraded with a new fore‐optical module, enabling it to measure direct solar beam and sky radiance at given azimuth and elevation angles. This double Czerny‐Turner spectroradiometer enables wavelength scanning from 290 to 410 nm, with a nominal bandwidth of 0.1 nm. It can operate with a step‐size of 0.0005 nm and a full width at half maximum of 0.1 nm. It has an out‐of‐band rejection ratio of approximately 10−10. This high resolution spectroradiometer can be used as a reference instrument for UV radiation measurements and for monitoring atmospheric gases such as O3, SO2, and NO2. A series of field observations were made using this spectroradiometer in the University at Albany campus. A residual analysis method is developed to analyze absorption by atmospheric components and to retrieve atmospheric optical depth. The residual optical depth was calculated by subtracting the optical depths of Rayleigh scattering, aerosol extinction, and absorption of typical atmospheric gases such as O3, SO2, and NO2from the retrieved total optical depth. Multiple case studies show that residual optical depth from the observed UV spectra is sensitive to the atmospheric water vapor amount. The greater the water vapor path, the larger the magnitude of residual optical depth. The ozone amount was inferred from the residual analysis; it is comparable to the satellite measurements. For example, in a case with water vapor path of 13 mm on October 24, 2019, the inferred ozone amount from residual analysis is 2.7% lower than retrievals from the Ozone Monitoring Instrument‐Total Ozone Mapping Spectrometer.

     
    more » « less
  4. Abstract

    A very high spatial resolution (25 m pixel at 90 km altitude) OH airglow imager was installed at the Andes Lidar Observatory on Cerro Pachón, Chile, in February 2016. This instrument was collocated with a Na wind‐temperature lidar. On 1 March 2016, the lidar data showed that the atmosphere was dynamically unstable before 0100 UT and thus conducive to the formation of Kelvin‐Helmholtz instabilities (KHIs). The imager revealed the presence of a KHI and an apparent atmospheric gravity wave (AGW) propagating approximately perpendicular to the plane of primary KHI motions. The AGW appears to have induced modulations of the shear layer leading to misalignments of the emerging KHI billows. These enabled strong KHI billow interactions, as they achieved large amplitudes and a rapid transition to turbulence thereafter. The interactions manifested themselves as vortex tube and knot features that were earlier identified in laboratory studies, as discussed in Thorpe (1987,https://doi.org/10.1029/JC092iC05p05231; 2002,https://doi.org/10.1002/qj.200212858307) and inferred to be widespread in the atmosphere based on features seen in tropospheric clouds but which have never been identified in previous upper atmospheric observations. This study presents the first high‐resolution airglow imaging observation of these KHI interaction dynamics that drive rapid transitions to turbulence and suggest the potential importance of these dynamics in the mesosphere and at other altitudes. A companion paper (Fritts et al., 2020,https://doi.org/10.1029/2020JD033412) modeling these dynamics confirms that the vortex tubes and knots yield more rapid and significantly enhanced turbulence relative to the internal instabilities of individual KHI billows.

     
    more » « less
  5. Abstract

    Positive lightning discharges to ground (+CGs) are relatively rare and considerably less studied than negative ones (-CGs). We present observations of unusual transient phenomena occurring in +CGs and discuss their mechanisms. One of them is a brief electric coupling to a concurrent -CG initiated from a 257-m tall tower located 11 km from the +CG channel. A transient process (stroke) in the -CG flash appears to cause a transient luminosity enhancement (M-component) in the +CG channel. In the course of these essentially simultaneous transients, positive charge is in effect taken from the ground at the position of the tower and injected into the ground at the position of the +CG channel. Recoil leaders reactivating decayed +CG branches near the cloud base are each observed to cause a transient luminosity decrease (dip), as opposed to the expected luminosity increase, in the +CG main channel.

     
    more » « less