skip to main content


Title: POSSIBILITIES AND PROMISES OF USING ARGUMENTATION IN THE TEACHING OF MATHEMATICS, SCIENCE, AND CODING
In this presentation, the research team discussed teachers' facilitation of argumentation in teaching computer programming (or coding) and how it related to their epistemic beliefs about mathematics and science. The preliminary results showed that teachers engaged their students in both justificatory and inquiry arguments when teaching coding. This was not the case with respect to mathematics and science, in which teachers described engaging students either in justificatory or inquiry argumentation exclusively. The team proposes that these siloed uses of argumentation in mathematics and science relate to the teachers' epistemic beliefs about the disciplines, and their use of argumentation in coding builds on and goes beyond their experiences with argumentation in teaching mathematics and science.  more » « less
Award ID(s):
1741910
NSF-PAR ID:
10249812
Author(s) / Creator(s):
Publisher / Repository:
AERA Online Paper Repository
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sacristán, A.I. ; Cortés-Zavala, J.C. ; Ruiz-Arias, P.M. (Ed.)
    Teachers in the elementary grades often teach all subjects and are expected to have appropriate content knowledge of a wide range of disciplines. Current recommendations suggest teachers should integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM lessons. Although there are many similarities between STEM fields, there are also epistemological differences to be understood by students and teachers. This study investigated teachers’ beliefs about teaching mathematics and science using argumentation and the epistemological and contextual factors that may have influenced these beliefs. Teachers’ beliefs about different epistemological underpinnings of mathematics and science, along with contextual constraints, led to different beliefs and intentions for practice with respect to argumentation in these disciplines. The contextual constraint of testing and the amount of curriculum the teachers perceived as essential focused more attention on the teaching of mathematics, which could be seen as benefiting student learning of mathematics. On the other hand, the perception of science as involving wonder, curiosity, and inherently positive and interesting ideas may lead to the creation of a more positive learning environment for the teaching of science. These questions remain open and need to be studied further: What are the consequences of perceiving argumentation in mathematics as limited to concepts already well-understood? Can integrating the teaching of mathematics and science lead to more exploratory and inquiry-based teaching of mathematical ideas alongside scientific ones? 
    more » « less
  2. Brown, Ryan ; Antink-Meyer, Allison (Ed.)
    Current education reforms call for engaging students in learning science, technology, engineering, and mathematics (STEM) in an integrative way. This critical case study of one fourth grade teacher investigated the use of educational robots (ER) not only for teaching coding, but as an instructional support in teaching mathematical concepts. To support teachers in teaching coding in an integrative and logical manner, our team developed the Collective Argumentation Learning and Coding (CALC) approach. The CALC approach consists of three elements: choice of task, coding content, and teacher support for argumentation. After a cohort of elementary teachers completed a professional development course, we followed them into their classrooms to support and document implementation of the CALC approach. Data for this case consisted of video recordings of two lessons, a Pre-interview, and Post-interview after each lesson. Research questions included: How does an elementary teacher use the CALC approach (integrative STEM approach) to teach mathematics concepts with ER? What are the teacher’s perspectives towards teaching mathematics with ER using an integrative STEM approach? Results from this critical case provide evidence that teachers can successfully integrate ER into the mathematics curriculum without losing coherence of mathematics topics and while remaining sensitive to students’ needs. 
    more » « less
  3. Sacristán, A.I. ; Cortés-Zavala, J.C. ; Ruiz-Arias, P.M. (Ed.)
    Collective Argumentation Learning and Coding (CALC) is a project focused on providing teachers with strategies to engage students in collective argumentation in mathematics, science, and coding. Collective argumentation can be characterized by any instance where multiple people (teachers and students) work together to establish a claim and provide evidence to support it (Conner et al., 2014b). Collective argumentation is an effective approach for promoting critical and higher order thinking and supporting students’ ability to articulate and justify claims. The goal of the CALC project is to help elementary school teachers extend the use of collective argumentation from teaching mathematics and science to teaching coding. Doing so increases the probability that teachers will integrate coding in regular classroom instruction, making it accessible to all students. This project highlighted Gloria (pseudonym), a fourth-grade teacher from Cohort 1 because of the extent to which she went from fear of coding to fluent implementation. Initially, Gloria was comfortable engaging her students in argumentation, explaining they already used it in mathematics with Cognitively Guided Instruction (CGI). However, she was “terrified” about learning to code because she didn’t view herself as proficient with technology. She was willing to overcome her fear of coding because she saw the value in providing her students with coding experiences that would help them develop the necessary skills for our increasingly technological society. In the course of three months, Gloria’s instruction progressed from using simple coding activities to more sophisticated coding platforms. This progression in her coding instruction paralleled the change in her personal feelings about coding as she moved from “terrified” to “comfortable with it”. 
    more » « less
  4. This project, titled Collective Argumentation Learning and Coding (CALC), is based on our belief that if teachers had an instructional approach that allowed them to teach coding alongside mathematics and science in integrated ways, then coding would become a mainstream subject taught in the elementary school curriculum. However, few practicing elementary school teachers have the academic backgrounds that allow them to teach coding in a manner that goes beyond allowing students to learn how to code through trial-and-error experimentation and as an additive learning activity such as an after-school program. Current content and practice standards call for the use of argumentation in the teaching of mathematics and science. This project is focused on extending the collective argumentation framework for the teaching of mathematics to the teaching of coding. Teachers at our partnering school district have completed the first design of a prototype CALC course where they used collective argumentation to learn how to code educational robotics. At the end of this course, the teachers developed lesson plans that were implemented in grades 3, 4 and 5.This paper and conference presentation focused on the research question, how do elementary school teachers use the CALC approach to support their students’ learning of coding, mathematics, and science content and practices? Overall, the implementation of the CALC approach demonstrated the growth of the teachers in their ability to teach coding as a reasoning process and as a means to integrate it into everyday classroom activities. 
    more » « less
  5. This project, titled Collective Argumentation Learning and Coding (CALC), aims to use the principles of collective argumentation to teach coding through appropriate reasoning. Creating and critiquing arguments as part of a coding activity promotes a more structured approach rather than the trial-and-error coding activity commonly used by novice programmers. Teaching coding via collective argumentation allows teachers to use methods that are already in use in mathematics and science instruction to teach coding, thus increasing the probability that it will be taught in conjunction with mathematics and science as regular parts of classroom instruction rather than relegated to an after-school or enrichment activity for only some students. Specific objectives of the CALC project are to - increase the attention that coding is given in the elementary classrooms taught by our participating teachers, and -direct students away from informal approaches (e.g.trial-and-error) to develop code to the more formal, structured approach recommended for novice programmers. Our research activities investigate teachers’ understanding of argumentation using the CALC concept and how the implementation of the CALC concept helps students (grades 3-5) learn how to code. The CALC approach supports the learning of coding by providing teachers with a formal, structured means to a) trace the growth of students’ understanding, and misunderstanding, of ideas (i.e., coding) as they form, b) facilitate students’ use of evidence, not opinion, to select a solution among multiple solutions (i.e., different sequencing of the code), and c) help each student realize she/he, as well as others, is a legitimate participant (i.e., a programmer) in the activity of developing, assessing and implementing an idea (e.g., coding of a robot). This paper/presentation discussed the first phase of an on-going investigation and focuses on a prototype graduate-level course designed for and taught to practicing elementary school teachers. The discussion outlines how the course impacted the participating teachers content knowledge of coding and their belief that coding can be made an integral part of everyday lessons, not as an add-on activity. 
    more » « less