skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for even parity unconventional superconductivity in Sr 2 RuO 4
Unambiguous identification of the superconducting order parameter symmetry in Sr 2 RuO 4 has remained elusive for more than a quarter century. While a chiral p-wave ground state analogue to superfluid3He-A was ruled out only very recently, other proposed triplet-pairing scenarios are still viable. Establishing the condensate magnetic susceptibility reveals a sharp distinction between even-parity (singlet) and odd-parity (triplet) pairing since the superconducting condensate is magnetically polarizable only in the latter case. Here field-dependent17O Knight shift measurements, being sensitive to the spin polarization, are compared to previously reported specific heat measurements for the purpose of distinguishing the condensate contribution from that due to quasiparticles. We conclude that the shift results can be accounted for entirely by the expected field-induced quasiparticle response. An upper bound for the condensate magnetic response of <10% of the normal state susceptibility is sufficient to exclude all purely odd-parity candidates.  more » « less
Award ID(s):
1709304 2004553
PAR ID:
10249821
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
25
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2025313118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The superconducting state of the heavy-fermion metal UTe 2 has attracted considerable interest because of evidence of spin-triplet Cooper pairing and nontrivial topology. Progress on these questions requires identifying the presence or absence of nodes in the superconducting gap function and their dimension. In this article, we report a comprehensive study of the influence of disorder on the thermal transport in the superconducting state of UTe 2 . Through detailed measurements of the magnetic-field dependence of the thermal conductivity in the zero-temperature limit, we obtain clear evidence of the presence of point nodes in the superconducting gap for all samples with transition temperatures ranging from 1.6 to 2.1 K obtained by different synthesis methods, including a refined self-flux method. This robustness implies the presence of symmetry-imposed nodes throughout the range studied, further confirmed via disorder-dependent calculations of the thermal transport in a model with a single pair of nodes. In addition to capturing the temperature dependence of the thermal conductivity up to T c , this model provides some information about the locations of the nodes, suggesting a B 1 u or B 2 u symmetry for the superconducting order parameter. Additionally, comparing the new, ultrahigh conductivity samples to older samples reveals a crossover between a low-field and a high-field regime at a single value of the magnetic field in all samples. In the high-field regime, the thermal conductivity at different disorder levels differs from each other by a simple offset, suggesting that some simple principle determines the physics of the mixed state, a fact which may illuminate trends observed in other clean nodal superconductors. Published by the American Physical Society2025 
    more » « less
  2. Abstract The polarization of the cosmic microwave background is rich in information but obscured by foreground emission from the Milky Way’s interstellar medium (ISM). To uncover relationships between the underlying turbulent ISM and the foreground power spectra, we simulated a suite of driven, magnetized, turbulent models of the ISM, varying the fluid properties via the sonic Mach number, M S , and magnetic (Alfvén) Mach number, M A . We measure the power spectra of density (ρ), velocity (v), magnetic field (H), total projected intensity (T), parity-even polarization (E), and parity-odd polarization (B). We find that the slopes of all six quantities increase with M S . Most increase with M A , while the magnetic field spectrum steepens with M A . By comparing spectral slopes ofEandBto those measured by Planck, we infer typical values of M S and M A for the ISM. As the fluid velocity increases, M S > 4 , the ratio of BB power to EE power increases to approach a constant value near the Planck-observed value of ∼0.5, regardless of the magnetic field strength. We also examine correlation coefficients between projected quantities, and find thatrTE≈ 0.3, in agreement with Planck, for appropriate combinations of M S and M A . Finally, we consider parity-violating correlationsrTBandrEB
    more » « less
  3. Abstract The production of a pair of τ leptons via photon–photon fusion, γ γ τ τ , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of γ γ τ τ is σ obs fid = 12.4 3.1 + 3.8 fb . Constraints are set on the contributions to the anomalous magnetic moment ( a τ ) and electric dipole moments ( d τ ) of the τ lepton originating from potential effects of new physics on the γ τ τ vertex: a τ = 0.0009 0.0031 + 0.0032 and | d τ | < 2.9 × 10 17 e cm (95% confidence level), consistent with the standard model. 
    more » « less
  4. We present measurements of thermally generated transverse spin currents in the topological insulator Bi2Se3, thereby completing measurements of interconversions among the full triad of thermal gradients, charge currents, and spin currents. We accomplish this by comparing the spin Nernst magneto-thermopower to the spin Hall magnetoresistance for bilayers of Bi2Se3/CoFeB. We find that Bi2Se3does generate substantial thermally driven spin currents. A lower bound for the ratio of spin current density to thermal gradient is J s x T = (4.9 ± 0.9) × 106 ( 2 e ) A   m 2 K   μ m 1 , and a lower bound for the magnitude of the spin Nernst ratio is −0.61 ± 0.11. The spin Nernst ratio for Bi2Se3is the largest among all materials measured to date, two to three times larger compared to previous measurements for the heavy metals Pt and W. Strong thermally generated spin currents in Bi2Se3can be understood via Mott relations to be due to an overall large spin Hall conductivity and its dependence on electron energy. 
    more » « less
  5. Abstract Cuprous oxide ($$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O ) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to$$n^2$$ n 2 ) enables strong long-range dipole-dipole (proportional to$$n^4$$ n 4 ) and van der Waals interactions (proportional to$$n^{11}$$ n 11 ). Currently, the highest-lying Rydberg states are found in naturally occurring$$\hbox {Cu}_2\hbox {O}$$ Cu 2 O . However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film$$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a$$\hbox {Cu}{}_2\hbox {O}$$ Cu 2 O thin film on a transparent substrate that showcases Rydberg excitons up to$$n = 8$$ n = 8 which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies. 
    more » « less