skip to main content


Title: Study of disorder in pulsed laser deposited double perovskite oxides by first-principle structure prediction
Abstract

Double perovskite oxides, with generalized formula A2BB$$^{\prime}$$O6, attract wide interest due to their multiferroic and charge transfer properties. They offer a wide range of potential applications such as spintronics and electrically tunable devices. However, great practical limitations are encountered, since a spontaneous order of the B-site cations is notoriously hard to achieve. In this joint experimental-theoretical work, we focused on the characterization of double perovskites La2TiFeO6and La2VCuO6films grown by pulsed laser deposition and interpretation of the observed B-site disorder and partial charge transfer between the B-site ions. A random structure sampling method was used to show that several phases compete due to their corresponding configurational entropy. In order to capture a representative picture of the most relevant competing microstates in realistic experimental conditions, this search included the potential formation of non-stoichiometric phases as well, which could also be directly related to the observed partial charge transfer. We optimized the information encapsulated in the potential energy landscape, captured via structure sampling, by evaluating both enthalpic and entropic terms. These terms were employed as a metric for the competition of different phases. This approach, applied herein specifically to La2TiFeO6, highlights the presence of highly entropic phases above the ground state which can explain the disorder observed frequently in the broader class of double perovskite oxides.

 
more » « less
NSF-PAR ID:
10249899
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
7
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Perovskite oxides (ternary chemical formula ABO3) are a diverse class of materials with applications including heterogeneous catalysis, solid-oxide fuel cells, thermochemical conversion, and oxygen transport membranes. However, their multicomponent (chemical formula$${A}_{x}{A}_{1-x}^{\text{'}}{B}_{y}{B}_{1-y}^{\text{'}}{O}_{3}$$AxA1x'ByB1y'O3) chemical space is underexplored due to the immense number of possible compositions. To expand the number of computed$${A}_{x}{A}_{1-x}^{{\prime} }{B}_{y}{B}_{1-y}^{{\prime} }{O}_{3}$$AxA1xByB1yO3compounds we report a dataset of 66,516 theoretical multinary oxides, 59,708 of which are perovskites. First, 69,407$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$A0.5A0.5B0.5B0.5O3compositions were generated in theab+aGlazer tilting mode using the computationally-inexpensive Structure Prediction and Diagnostic Software (SPuDS) program. Next, we optimized these structures with density functional theory (DFT) using parameters compatible with the Materials Project (MP) database. Our dataset contains these optimized structures and their formation (ΔHf) and decomposition enthalpies (ΔHd) computed relative to MP tabulated elemental references and competing phases, respectively. This dataset can be mined, used to train machine learning models, and rapidly and systematically expanded by optimizing more SPuDS-generated$${A}_{0.5}{A}_{0.5}^{{\prime} }{B}_{0.5}{B}_{0.5}^{{\prime} }{O}_{3}$$A0.5A0.5B0.5B0.5O3perovskite structures using MP-compatible DFT calculations.

     
    more » « less
  2. Abstract

    The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the$${d}_{{x}^{2}-{y}^{2}}$$dx2y2orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using CuL3and PrM5resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa2Cu3O7, where the Prf-electrons create a direct orbital bridge between CuO2planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.

     
    more » « less
  3. Abstract

    A classical parking function of lengthnis a list of positive integers$$(a_1, a_2, \ldots , a_n)$$(a1,a2,,an)whose nondecreasing rearrangement$$b_1 \le b_2 \le \cdots \le b_n$$b1b2bnsatisfies$$b_i \le i$$bii. The convex hull of all parking functions of lengthnis ann-dimensional polytope in$${\mathbb {R}}^n$$Rn, which we refer to as the classical parking function polytope. Its geometric properties have been explored in Amanbayeva and Wang (Enumer Combin Appl 2(2):Paper No. S2R10, 10, 2022) in response to a question posed by Stanley (Amer Math Mon 127(6):563–571, 2020). We generalize this family of polytopes by studying the geometric properties of the convex hull of$${\textbf{x}}$$x-parking functions for$${\textbf{x}}=(a,b,\dots ,b)$$x=(a,b,,b), which we refer to as$${\textbf{x}}$$x-parking function polytopes. We explore connections between these$${\textbf{x}}$$x-parking function polytopes, the Pitman–Stanley polytope, and the partial permutahedra of Heuer and Striker (SIAM J Discrete Math 36(4):2863–2888, 2022). In particular, we establish a closed-form expression for the volume of$${\textbf{x}}$$x-parking function polytopes. This allows us to answer a conjecture of Behrend et al. (2022) and also obtain a new closed-form expression for the volume of the convex hull of classical parking functions as a corollary.

     
    more » « less
  4. Abstract

    A study of possible superconducting phases of graphene has been constructed in detail. A realistic tight binding model, fit to ab initio calculations, accounts for the Li-decoration of graphene with broken lattice symmetry, and includessanddsymmetry Bloch character that influences the gap symmetries that can arise. The resulting seven hybridized Li-C orbitals that support nine possible bond pairing amplitudes. The gap equation is solved for all possible gap symmetries. One band is weakly dispersive near the Fermi energy along Γ → Mwhere its Bloch wave function has linear combination of$${d}_{{x}^{2}-{y}^{2}}$$dx2y2anddxycharacter, and is responsible for$${d}_{{x}^{2}-{y}^{2}}$$dx2y2anddxypairing with lowest pairing energy in our model. These symmetries almost preserve properties from a two band model of pristine graphene. Another part of this band, alongK → Γ, is nearly degenerate with uppersband that favors extendedswave pairing which is not found in two band model. Upon electron doping to a critical chemical potentialμ1 = 0.22 eVthe pairing potential decreases, then increases until a second critical valueμ2 = 1.3 eV at which a phase transition to a distorteds-wave occurs. The distortion ofd- or s-wave phases are a consequence of decoration which is not appear in two band pristine model. In the pristine graphene these phases convert to usuald-wave or extendeds-wave pairing.

     
    more » « less
  5. Abstract

    A search for pair-produced vector-like quarks using events with exactly one lepton (eor$$\mu $$μ), at least four jets including at least oneb-tagged jet, and large missing transverse momentum is presented. Data from proton–proton collisions at a centre-of-mass energy of$$\sqrt{s}=$$s=13 $$\text {TeV}$$TeV, recorded by the ATLAS detector at the LHC from 2015 to 2018 and corresponding to an integrated luminosity of 139 fb$$^{-1}$$-1, are analysed. Vector-like partnersTandBof the top and bottom quarks are considered, as is a vector-likeXwith charge$$+5/3$$+5/3, assuming their decay into aW,Z, or Higgs boson and a third-generation quark. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section ofTandBquark pairs as a function of their mass are derived for various decay branching ratio scenarios. The strongest lower limits on the masses are 1.59 $$\text {TeV}$$TeVassuming mass-degenerate vector-like quarks and branching ratios corresponding to the weak-isospin doublet model, and 1.47 $$\text {TeV}$$TeV(1.46 $$\text {TeV}$$TeV) for exclusive$$T \rightarrow Zt$$TZt($$B/X \rightarrow Wt$$B/XWt) decays. In addition, lower limits on theTandBquark masses are derived for all possible branching ratios.

     
    more » « less