Differential methylation of imprinting control regions in mammals is essential for distinguishing the parental alleles from each other and regulating their expression accordingly. To ensure parent of origin-specific expression of imprinted genes and thereby normal developmental progression, the differentially methylated states that are inherited at fertilization must be stably maintained by DNA methyltransferase 1 throughout subsequent somatic cell division. Further epigenetic modifications, such as the acquisition of secondary regions of differential methylation, are dependent on the methylation status of imprinting control regions and are important for achieving the monoallelic expression of imprinted genes, but little is known about how imprinting control regions direct the acquisition and maintenance of methylation at these secondary sites. Recent analysis has identified mutations that reduce DNA methyltransferase 1 fidelity at some genomic sequences but not at others, suggesting that it may function differently at different loci. We examined the impact of the mutant DNA methyltransferase 1 P allele on methylation at imprinting control regions as well as at secondary differentially methylated regions and non-imprinted sequences. We found that while the P allele results in a major reduction in DNA methylation levels across the mouse genome, methylation is specifically maintained at imprinting control regions but not at their corresponding secondary DMRs. This result suggests that DNA methyltransferase 1 may work differently at imprinting control regions or that there is an alternate mechanism for maintaining methylation at these critical regulatory regions and that maintenance of methylation at secondary DMRs is not solely dependent on the methylation status of the ICR.
more »
« less
Hemimethylation of CpG dyads is characteristic of secondary DMRs associated with imprinted loci and correlates with 5-hydroxymethylcytosine at paternally methylated sequences
Abstract Background In mammals, the regulation of imprinted genes is controlled by differential methylation at imprinting control regions which acquire parent of origin-specific methylation patterns during gametogenesis and retain differences in allelic methylation status throughout fertilization and subsequent somatic cell divisions. In addition, many imprinted genes acquire differential methylation during post-implantation development; these secondary differentially methylated regions appear necessary to maintain the imprinted expression state of individual genes. Despite the requirement for both types of differentially methylated sequence elements to achieve proper expression across imprinting clusters, methylation patterns are more labile at secondary differentially methylated regions. To understand the nature of this variability, we analyzed CpG dyad methylation patterns at both paternally and maternally methylated imprinted loci within multiple imprinting clusters. Results We determined that both paternally and maternally methylated secondary differentially methylated regions associated with imprinted genes display high levels of hemimethylation, 29–49%, in comparison to imprinting control regions which exhibited 8–12% hemimethylation. To explore how hemimethylation could arise, we assessed the differentially methylated regions for the presence of 5-hydroxymethylcytosine which could cause methylation to be lost via either passive and/or active demethylation mechanisms. We found enrichment of 5-hydroxymethylcytosine at paternally methylated secondary differentially methylated regions, but not at the maternally methylated sites we analyzed in this study. Conclusions We found high levels of hemimethylation to be a generalizable characteristic of secondary differentially methylated regions associated with imprinted genes. We propose that 5-hydroxymethylcytosine enrichment may be responsible for the variability in methylation status at paternally methylated secondary differentially methylated regions associated with imprinted genes. We further suggest that the high incidence of hemimethylation at secondary differentially methylated regions must be counteracted by continuous methylation acquisition at these loci.
more »
« less
- Award ID(s):
- 1514600
- PAR ID:
- 10249927
- Date Published:
- Journal Name:
- Epigenetics & Chromatin
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 1756-8935
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Targeted demethylation by DNA glycosylases (DNGs) results in differential methylation between parental alleles in the endosperm, which drives imprinted expression. Here, we performed RNA sequencing on endosperm derived from DNG mutant mdr1 and wild-type (WT) endosperm. Consistent with the role of DNA methylation in gene silencing, we find 108 genes and 96 TEs differentially expressed (DE) transcripts that lost expression in the hypermethylated mdr1 mutant. Compared with other endosperm transcripts, the mdr1 targets are enriched for TEs (particularly Helitrons), and DE genes are depleted for both core genes and GO term assignments, suggesting that the majority of DE transcripts are TEs and pseudo-genes. By comparing DE genes to imprinting calls from prior studies, we find that the majority of DE genes have maternally biased expression, and approximately half of all maternally expressed genes (MEGs) are DE in this study. In contrast, no paternally expressed genes (PEGs) are DE. DNG-dependent imprinted genes are distinguished by maternal demethylation and expression primarily in the endosperm, so we also performed Enzymatic Methyl-seq on hybrids to identify maternal demethylation and utilized a W22 gene expression atlas to identify genes expressed primarily in the endosperm. Overall, approximately ⅔ of all MEGs show evidence of regulation by DNGs. Taken together, this study solidifies the role of MDR1 in the regulation of maternally expressed, imprinted genes and TEs and identifies subsets of genes with DNG-independent imprinting regulation.more » « less
-
SUMMARY Medicago truncatulais a model legume for fundamental research on legume biology and symbiotic nitrogen fixation.Tnt1, a retrotransposon from tobacco, was used to generate insertion mutants inM. truncatulaR108. Approximately 21 000 insertion lines have been generated and publicly available.Tnt1retro‐transposition event occurs during somatic embryogenesis (SE), a pivotal process that triggers massive methylation changes. We studied the SE ofM. truncatulaR108 using leaf explants and explored the dynamic shifts in the methylation landscape from leaf explants to callus formation and finally embryogenesis. Higher cytosine methylation in all three contexts of CG, CHG, and CHH patterns was observed during SE compared to the controls. Higher methylation patterns were observed in assumed promoter regions (~2‐kb upstream regions of transcription start site) of the genes, while lowest was recorded in the untranslated regions. Differentially methylated promoter region analysis showed a higher CHH methylation in embryogenesis tissue samples when compared to CG and CHG methylation. Strong correlation (89.71%) was identified between the differentially methylated regions (DMRs) and the site ofTnt1insertions inM. truncatulaR108 and stronger hypermethylation of genes correlated with higher number ofTnt1insertions in all contexts of CG, CHG, and CHH methylation. Gene ontology enrichment and KEGG pathway enrichment analysis identified genes and pathways enriched in the signal peptide processing, ATP hydrolysis, RNA polymerase activity, transport, secondary metabolites, and nitrogen metabolism pathways. Combined gene expression analysis and methylation profiling showed an inverse relationship between methylation in the DMRs (regions spanning genes) and the expression of genes. Our results show that a dynamic shift in methylation happens during the SE process in the context of CG, CHH and CHG methylation, and theTnt1retrotransposition correlates with the hyperactive methylation regions.more » « less
-
Maternal stress has been linked to low birth weight in newborns. One potential pathway involves epigenetic changes at candidate genes that may mediate the effects of prenatal maternal stress on birth weight. This relationship has been documented in stress-related genes, such as NR3C1 . There is less literature exploring the effect of stress on growth-related genes. IGF1 and IGF2 have been implicated in fetal growth and development, though via different mechanisms as IGF2 is under imprinting control. In this study, we tested for associations between prenatal stress, methylation of IGF1 and IGF2 , and birth weight. A total of 24 mother–newborn dyads in the Democratic Republic of Congo were enrolled. Ethnographic interviews were conducted with mothers at delivery to gather culturally relevant war-related and chronic stressors. DNA methylation data were generated from maternal venous, cord blood and placental tissue samples. Multivariate regressions were used to test for associations between stress measures, DNA methylation and birth weight in each of the three tissue types. We found an association between IGF2 methylation in maternal blood and birth weight. Previous literature on the relationship between IGF2 methylation and birth weight has focused on methylation at known differentially methylated regions in cord blood or placental samples. Our findings indicate there may be links between the maternal epigenome and low birth weight that rely on mechanisms outside known imprinting pathways. It thus may be important to consider the effect of maternal exposures and epigenetic profiles on birth weight even in the setting of maternally imprinted genes such as IGF2 .more » « less
-
Abstract It has been hypothesized that environmentally induced changes to gene body methylation could facilitate adaptive transgenerational responses to changing environments.We compared patterns of global gene expression (Tag‐seq) and gene body methylation (reduced representation bisulfite sequencing) in 80 eastern oystersCrassostrea virginicafrom six full‐sib families, common gardened for 14 months at two sites in the northern Gulf of Mexico that differed in mean salinity.At the time of sampling, oysters from the two sites differed in mass by 60% and in parasite loads by nearly two orders of magnitude. They also differentially expressed 35% of measured transcripts. However, we observed differential methylation at only 1.4% of potentially methylated loci in comparisons between individuals from these different environments, and little correspondence between differential methylation and differential gene expression.Instead, methylation patterns were largely driven by genetic differences among families, with a PERMANOVA analysis indicating nearly a two orders of magnitude greater number of genes differentially methylated between families than between environments.An analysis of CpG observed/expected values (CpG O/E) across theC.virginicagenome showed a distinct bimodal distribution, with genes from the first cluster showing the lower CpG O/E values, greater methylation and higher and more stable gene expression, while genes from the second cluster showed lower methylation, and lower and more variable gene expression.Taken together, the differential methylation results suggest that only a small portion of theC.virginicagenome is affected by environmentally induced changes in methylation. At this point, there is little evidence to suggest that environmentally induced methylation states would play a leading role in regulating gene expression responses to new environments.more » « less
An official website of the United States government

