skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abiological catalysis by myoglobin mutant with a genetically incorporated unnatural amino acid
To inculcate biocatalytic activity in the oxygen-storage protein myoglobin (Mb), a genetically engineered myoglobin mutant H64DOPA (DOPA = L-3,4-dihydroxyphenylalanine) has been created. Incorporation of unnatural amino acids has already demonstrated their ability to accomplish many non-natural functions in proteins efficiently. Herein, the presence of redox-active DOPA residue in the active site of mutant Mb presumably stabilizes the compound I in the catalytic oxidation process by participating in an additional hydrogen bonding (H-bonding) as compared to the WT Mb. Specifically, a general acid-base catalytic pathway was achieved due to the availability of the hydroxyl moieties of DOPA. The reduction potential values of WT (E° = −260 mV) and mutant Mb (E° = −300 mV), w.r.t. Ag/AgCl reference electrode, in the presence of hydrogen peroxide, indicated an additional H-bonding in the mutant protein, which is responsible for the peroxidase activity of the mutant Mb. We observed that in the presence of 5 mM H2O2, H64DOPA Mb oxidizes thioanisole and benzaldehyde with a 10 and 54 folds higher rate, respectively, as opposed to WT Mb. Based on spectroscopic, kinetic, and electrochemical studies, we deduce that DOPA residue, when present within the distal pocket of mutant Mb, alone serves the role of His/Arg-pair of peroxidases.  more » « less
Award ID(s):
1709369 2003236
PAR ID:
10250101
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Biochemical Journal
Volume:
478
Issue:
9
ISSN:
0264-6021
Page Range / eLocation ID:
1795 to 1808
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    A highly conserved second-sphere active site αSer residue in nitrile hydratase (NHase), that forms a hydrogen bond with the axial metal-bound water molecule, was mutated to Ala, Asp, and Thr, in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and to Ala and Thr in the Fe-type NHase from Rhodococcus equi TG328–2 (ReNHase). All five mutants were successfully purified; metal analysis via ICP-AES indicated that all three Co-type PtNHase mutants were in their apo-form while the Fe-type αSer117Ala and αSer117Thr mutants contained 85 and 50 % of their active site Fe(III) ions, respectively. The kcat values obtained for the PtNHase mutant enzymes were between 0.03 ± 0.01 and 0.2 ± 0.02 s− 1 amounting to <0.8 % of the kcat value observed for WT PtNHase. The Fe-type ReNHase mutants retained some detectable activity with kcat values of 93 ± 3 and 40 ± 2 s− 1 for the αSer117Ala and αSer117Thr mutants, respectively, which is ~5 % of WT ReNHase activity towards acrylonitrile. UV–Vis spectra coupled with EPR data obtained on the ReNHase mutant enzymes showed subtle changes in the electronic environment around the active site Fe(III) ions, consistent with altering the hydrogen bonding interaction with the axial water ligand. X-ray crystal structures of the three PtNHase mutant enzymes confirmed the mutation and the lack of active site metal, while also providing insight into the active site hydrogen bonding network. Taken together, these data confirm that the conserved active site αSer residue plays an important catalytic role but is not essential for catalysis. They also confirm the necessity of the conserved second-sphere αSer residue for the metalation process and subsequent post-translational modification of the α-subunit in Co-type NHases but not Fe-type NHases, suggesting different mechanisms for the two types of NHases. 
    more » « less
  2. Two conserved second-sphere βArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328–2 (ReNHase). Only five of the eight mutants (PtNHase βR52A, βR52K, βR157A, βR157K and ReNHase βR61A) were successfully expressed and purified. Apart from the PtNHase βR52A mutant that exhibited no detectable activity, the kcat values obtained for the PtNHase and ReNHase βR mutant enzymes were between 1.8 and 12.4 s− 1 amounting to <1% of the kcat values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ~10 to ~40%. UV–Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase βR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calcu- lations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second- sphere βR residues in the proposed subunit swapping process and post-translational modification of the α-sub- unit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form. 
    more » « less
  3. Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle. 
    more » « less
  4. Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe 7 S 9 MoC-homocitrate) as a critical N 2 binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E 4 (4H), which has accumulated 4[e − /H + ] as two bridging hydrides, Fe2–H–Fe6 and Fe3–H–Fe7, and protons bound to two sulfurs. E 4 (4H) is poised to bind/reduce N 2 as driven by mechanistically-coupled H 2 reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H 2 as the enzyme relaxes to state E 2 (2H), containing 2[e − /H + ] as a hydride and sulfur-bound proton; accumulation of E 4 (4H) in α-V70I is enhanced by HP suppression. EPR and 95 Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e − /H + ] to the E 0 state of the WT MoFe protein and to both α-V70I conformations generating E 2 (2H) that contains the Fe3–H–Fe7 bridging hydride; accumulation of another 2[e − /H + ] generates E 4 (4H) with Fe2–H–Fe6 as the second hydride. E 4 (4H) in WT enzyme and a minority α-V70I E 4 (4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2–H–Fe6 followed by slower HP of Fe3–H–Fe7, which leads to transient accumulation of E 2 (2H) containing Fe3–H–Fe7. In the dominant α-V70I E 4 (4H) conformation, HP of Fe2–H–Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3–H–Fe7 occurs first and the resulting E 2 (2H) contains Fe2–H–Fe6. It is this HP suppression in E 4 (4H) that enables α-V70I MoFe to accumulate E 4 (4H) in high occupancy. In addition, HP suppression in α-V70I E 4 (4H) kinetically unmasks hydride reductive-elimination without N 2 -binding, a process that is precluded in WT enzyme. 
    more » « less
  5. Abstract The key to type 1 copper (T1Cu) function lies in the fine tuning of the CuII/Ireduction potential (E°′T1Cu) to match those of its redox partners, enabling efficient electron transfer in a wide range of biological systems. While the secondary coordination sphere (SCS) effects have been used to tuneE°′T1Cuin azurin over a wide range, these principles are yet to be generalized to other T1Cu‐containing proteins to tune catalytic properties. To this end, we have examined the effects of Y229F, V290N and S292F mutations around the T1Cu of small laccase (SLAC) fromStreptomyces coelicolorto match the highE°′T1Cuof fungal laccases. Using ultraviolet‐visible absorption and electron paramagnetic resonance spectroscopies, together with X‐ray crystallography and redox titrations, we have probed the influence of SCS mutations on the T1Cu and correspondingE°′T1Cu. While minimal and smallE°′T1Cuincreases are observed in Y229F‐ and S292F‐SLAC, the V290N mutant exhibits a majorE°′T1Cuincrease. Moreover, the influence of these mutations onE°′T1Cuis additive, culminating in a triple mutant Y229F/V290N/S292F‐SLAC with the highestE°′T1Cuof 556 mV vs. SHE reported to date. Further activity assays indicate that all mutants retain oxygen reduction reaction activity, and display improved catalytic efficiencies (kcat/KM) relative to WT‐SLAC. 
    more » « less