skip to main content

Title: Abiological catalysis by myoglobin mutant with a genetically incorporated unnatural amino acid
To inculcate biocatalytic activity in the oxygen-storage protein myoglobin (Mb), a genetically engineered myoglobin mutant H64DOPA (DOPA = L-3,4-dihydroxyphenylalanine) has been created. Incorporation of unnatural amino acids has already demonstrated their ability to accomplish many non-natural functions in proteins efficiently. Herein, the presence of redox-active DOPA residue in the active site of mutant Mb presumably stabilizes the compound I in the catalytic oxidation process by participating in an additional hydrogen bonding (H-bonding) as compared to the WT Mb. Specifically, a general acid-base catalytic pathway was achieved due to the availability of the hydroxyl moieties of DOPA. The reduction potential values of WT (E° = −260 mV) and mutant Mb (E° = −300 mV), w.r.t. Ag/AgCl reference electrode, in the presence of hydrogen peroxide, indicated an additional H-bonding in the mutant protein, which is responsible for the peroxidase activity of the mutant Mb. We observed that in the presence of 5 mM H2O2, H64DOPA Mb oxidizes thioanisole and benzaldehyde with a 10 and 54 folds higher rate, respectively, as opposed to WT Mb. Based on spectroscopic, kinetic, and electrochemical studies, we deduce that DOPA residue, when present within the distal pocket of mutant Mb, alone serves the role of His/Arg-pair of peroxidases.
Authors:
; ; ; ; ;
Award ID(s):
1709369 2003236
Publication Date:
NSF-PAR ID:
10250101
Journal Name:
Biochemical Journal
Volume:
478
Issue:
9
Page Range or eLocation-ID:
1795 to 1808
ISSN:
0264-6021
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871 is characterized as having wide substrate versatility for the biooxidation of (cyclic) ketones into esters and lactones with high stereospecificity. Despite industrial potential, CHMO usage is restricted by poor thermostability. Limited high-throughput screening tools and challenges in rationally engineering thermostability have impeded CHMO engineering efforts. We demonstrate the application of an aerobic, high-throughput growth selection platform in Escherichia coli (strain MX203) for the discovery of thermostability enhancing mutations for CHMO. The selection employs growth for the easy readout of CHMO activity in vivo, by requiring nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes tomore »restore cellular redox balance. In the presence of the native substrate cyclohexanone, variant CHMO GV (A245G-A288V) was discovered from a random mutagenesis library screened at 42 °C. This variant retained native activity, exhibited ~4.4-fold improvement in residual activity after 30 °C incubation, and demonstrated ~5-fold higher cyclohexanone conversion at 37 °C compared to the wild type. Molecular modeling indicates that CHMO GV experiences more favorable residue packing and supports additional backbone hydrogen bonding. Further rational design resulted in CHMO A245G-A288V-T415C with improved thermostability at 45 °C. Our platform for oxygenase evolution enabled the rapid engineering of protein stability critical for industrial scalability.« less
  2. Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-​air batteries, fuel cells, to solar-​to-​fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-​fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited bymore »the anodic oxygen evolution reaction (OER)​, which is a kinetically sluggish, electron-​intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-​abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ -​-​> Ni 3+ oxidn. potential in Ni-​based catalysts where Ni 3+ is the actually catalytically active species]​. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-​Fe, Co, and Ni-​Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA​/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -​NrGO - 170 mV (NrGO - N-​doped reduced graphene oxide)​; NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV]​.« less
  3. Hydroxylation of substituted phenols by flavin-dependent monooxygenases is the first step of their biotransformation in various microorganisms. The reaction is thought to proceed via electrophilic aromatic substitution, catalyzed by enzymatic deprotonation of substrate, in single-component hydroxylases that use flavin as a cofactor (group A). However, two-component hydroxylases (group D), which use reduced flavin as a co-substrate, are less amenable to spectroscopic investigation. Herein, we employed 19 F NMR in conjunction with fluorinated substrate analogs to directly measure p K a values and to monitor protein events in hydroxylase active sites. We found that the single-component monooxygenase 3-hydroxybenzoate 6-hydroxylase (3HB6H) depressesmore »the p K a of the bound substrate analog 4-fluoro-3-hydroxybenzoate (4F3HB) by 1.6 pH units, consistent with previously proposed mechanisms. 19 F NMR was applied anaerobically to the two-component monooxygenase 4-hydroxyphenylacetate 3-hydroxylase (HPAH), revealing depression of the p K a of 3-fluoro-4-hydroxyphenylacetate by 2.5 pH units upon binding to the C 2 component of HPAH. 19 F NMR also revealed a p K a of 8.7 ± 0.05 that we attributed to an active-site residue involved in deprotonating bound substrate, and assigned to His-120 based on studies of protein variants. Thus, in both types of hydroxylases, we confirmed that binding favors the phenolate form of substrate. The 9 and 14 kJ/mol magnitudes of the effects for 3HB6H and HPAH-C 2 , respectively, are consistent with p K a tuning by one or more H-bonding interactions. Our implementation of 19 F NMR in anaerobic samples is applicable to other two-component flavin-dependent hydroxylases and promises to expand our understanding of their catalytic mechanisms.« less
  4. A capacitance increase phenomenon is observed for MoO 3 electrodes synthesized via a sol-gel process in the presence of dopamine hydrochloride (Dopa HCl) as compared to α-MoO 3 electrodes in 5M ZnCl 2 aqueous electrolyte. The synthesis approach is based on a hydrogen peroxide-initiated sol-gel reaction to which the Dopa HCl is added. The powder precursor (Dopa) x MoO y , is isolated from the metastable gel using freeze-drying. Hydrothermal treatment (HT) of the precursor results in the formation of MoO 3 accompanied by carbonization of the organic molecules; designated as HT-MoO 3 /C. HT of the precipitate formed inmore »the absence of dopamine in the reaction produced α-MoO 3 , which was used as a reference material in this study (α-MoO 3 -ref). Scanning electron microscopy (SEM) images show a nanobelt morphology for both HT-MoO 3 /C and α-MoO 3 -ref powders, but with distinct differences in the shape of the nanobelts. The presence of carbonaceous content in the structure of HT-MoO 3 /C is confirmed by FTIR and Raman spectroscopy measurements. X-ray diffraction (XRD) and Rietveld refinement analysis demonstrate the presence of α-MoO 3 and h-MoO 3 phases in the structure of HT-MoO 3 /C. The increased specific capacitance delivered by the HT-MoO 3 /C electrode as compared to the α-MoO 3 -ref electrode in 5M ZnCl 2 electrolyte in a −0.25–0.70 V vs. Ag/AgCl potential window triggered a more detailed study in an expanded potential window. In the 5M ZnCl 2 electrolyte at a scan rate of 2 mV s −1 , the HT-MoO 3 /C electrode shows a second cycle capacitance of 347.6 F g −1 . The higher electrochemical performance of the HT-MoO 3 /C electrode can be attributed to the presence of carbon in its structure, which can facilitate electron transport. Our study provides a new route for further development of metal oxides for energy storage applications.« less
  5. Iridium oxide (IrO 2 ) is one of the best known electrocatalysts for the oxygen evolution reaction (OER) taking place in a strongly acidic solution. IrO 2 nanocatalysts with high activity as well as long-term catalytic stability, particularly at high current densities, are highly desirable for proton exchange membrane water electrolysis (PEM-WE). Here, we report a simple and cost-effective strategy for depositing ultrafine oxygen-defective IrO x nanoclusters (1–2 nm) on a high-surface-area, acid-stable titanium current collector (H-Ti@IrO x ), through a repeated impregnation–annealing process. The high catalytically active surface area resulting from the small size of IrO x and themore »preferable electronic structure originating from the presence of oxygen defects enable the outstanding OER performance of H-Ti@IrO x , with low overpotentials of 277 and 336 mV to deliver 10 and 200 mA cm −2 in 0.5 M H 2 SO 4 . Moreover, H-Ti@IrO x also shows an intrinsic specific activity of 0.04 mA cm catalyst −2 and superior mass activity of 1500 A g Ir −1 at an overpotential of 350 mV. Comprehensive experimental studies and density functional theory calculations confirm the important role of oxygen defects in the enhanced OER performance. Remarkably, H-Ti@IrO x can continuously catalyze the OER in 0.5 M H 2 SO 4 at 200 mA cm −2 for 130 hours with minimal degradation, and with a higher IrO x loading, it can sustain at such a high current density for over 500 hours without significant performance decay, holding substantial promise for use in PEM-WE.« less