skip to main content

Title: Transcriptomic coordination at hepatic steatosis indicates robust immune cell engagement prior to inflammation
Abstract Background Deregulation in lipid metabolism leads to the onset of hepatic steatosis while at subsequent stages of disease development, the induction of inflammation, marks the transition of steatosis to non-alcoholic steatohepatitis. While differential gene expression unveils individual genes that are deregulated at different stages of disease development, how the whole transcriptome is deregulated in steatosis remains unclear. Methods Using outbred deer mice fed with high fat as a model, we assessed the correlation of each transcript with every other transcript in the transcriptome. The onset of steatosis in the liver was also evaluated histologically. Results Our results indicate that transcriptional reprogramming directing immune cell engagement proceeds robustly, even in the absence of histologically detectable steatosis, following administration of high fat diet. In the liver transcriptomes of animals with steatosis, a preference for the engagement of regulators of T cell activation and myeloid leukocyte differentiation was also recorded as opposed to the steatosis-free livers at which non-specific lymphocytic activation was seen. As compared to controls, in the animals with steatosis, transcriptome was subjected to more widespread reorganization while in the animals without steatosis, reorganization was less extensive. Comparison of the steatosis and non-steatosis livers showed high retention of coordination suggesting more » that diet supersedes pathology in shaping the transcriptome’s profile. Conclusions This highly versatile strategy suggests that the molecular changes inducing inflammation proceed robustly even before any evidence of steatohepatitis is recorded, either histologically or by differential expression analysis. « less
Authors:
; ;
Award ID(s):
1736150
Publication Date:
NSF-PAR ID:
10250244
Journal Name:
BMC Genomics
Volume:
22
Issue:
1
ISSN:
1471-2164
Sponsoring Org:
National Science Foundation
More Like this
  1. Miller, Samuel I. (Ed.)
    ABSTRACT Animals that are competent reservoirs of zoonotic pathogens commonly suffer little morbidity from the infections. To investigate mechanisms of this tolerance of infection, we used single-dose lipopolysaccharide (LPS) as an experimental model of inflammation and compared the responses of two rodents: Peromyscus leucopus , the white-footed deermouse and reservoir for the agents of Lyme disease and other zoonoses, and the house mouse Mus musculus . Four hours after injection with LPS or saline, blood, spleen, and liver samples were collected and subjected to transcriptome sequencing (RNA-seq), metabolomics, and specific reverse transcriptase quantitative PCR (RT-qPCR). Differential expression analysis was at the gene, pathway, and network levels. LPS-treated deermice showed signs of sickness similar to those of exposed mice and had similar increases in corticosterone levels and expression of interleukin 6 (IL-6), tumor necrosis factor, IL-1β, and C-reactive protein. By network analysis, the M. musculus response to LPS was characterized as cytokine associated, while the P. leucopus response was dominated by neutrophil activity terms. In addition, dichotomies in the expression levels of arginase 1 and nitric oxide synthase 2 and of IL-10 and IL-12 were consistent with type M1 macrophage responses in mice and type M2 responses in deermice. Analysis ofmore »metabolites in plasma and RNA in organs revealed species differences in tryptophan metabolism. Two genes in particular signified the different phenotypes of deermice and mice: the Slpi and Ibsp genes. Key RNA-seq findings for P. leucopus were replicated in older animals, in a systemic bacterial infection, and with cultivated fibroblasts. The findings indicate that P. leucopus possesses several adaptive traits to moderate inflammation in its balancing of infection resistance and tolerance. IMPORTANCE Animals that are natural carriers of pathogens that cause human diseases commonly manifest little or no sickness as a consequence of infection. Examples include the deermouse, Peromyscus leucopus , which is a reservoir for Lyme disease and several other disease agents in North America, and some types of bats, which are carriers of viruses with pathogenicity for humans. Mechanisms of this phenomenon of infection tolerance and entailed trade-off costs are poorly understood. Using a single injection of lipopolysaccharide (LPS) endotoxin as a proxy for infection, we found that deermice differed from the mouse ( Mus musculus ) in responses to LPS in several diverse pathways, including innate immunity, oxidative stress, and metabolism. Features distinguishing the deermice cumulatively would moderate downstream ill effects of LPS. Insights gained from the P. leucopus model in the laboratory have implications for studying infection tolerance in other important reservoir species, including bats and other types of wildlife.« less
  2. Abstract Background

    TheBIN1locus contains the second-most significant genetic risk factor for late-onset Alzheimer’s disease.BIN1undergoes alternate splicing to generate tissue- and cell-type-specific BIN1 isoforms, which regulate membrane dynamics in a range of crucial cellular processes. Whilst the expression of BIN1 in the brain has been characterized in neurons and oligodendrocytes in detail, information regarding microglial BIN1 expression is mainly limited to large-scale transcriptomic and proteomic data. Notably, BIN1 protein expression and its functional roles in microglia, a cell type most relevant to Alzheimer’s disease, have not been examined in depth.

    Methods

    Microglial BIN1 expression was analyzed by immunostaining mouse and human brain, as well as by immunoblot and RT-PCR assays of isolated microglia or human iPSC-derived microglial cells.Bin1expression was ablated by siRNA knockdown in primary microglial cultures in vitro and Cre-lox mediated conditional deletion in adult mouse brain microglia in vivo. Regulation of neuroinflammatory microglial signatures by BIN1 in vitro and in vivo was characterized using NanoString gene panels and flow cytometry methods. The transcriptome data was explored by in silico pathway analysis and validated by complementary molecular approaches.

    Results

    Here, we characterized microglial BIN1 expression in vitro and in vivo and ascertained microglia expressed BIN1 isoforms. By silencingBin1expression in primary microglial cultures, wemore »demonstrate that BIN1 regulates the activation of proinflammatory and disease-associated responses in microglia as measured by gene expression and cytokine production. Our transcriptomic profiling revealed key homeostatic and lipopolysaccharide (LPS)-induced inflammatory response pathways, as well as transcription factors PU.1 and IRF1 that are regulated by BIN1. Microglia-specificBin1conditional knockout in vivo revealed novel roles of BIN1 in regulating the expression of disease-associated genes while counteracting CX3CR1 signaling. The consensus from in vitro and in vivo findings showed that loss ofBin1impaired the ability of microglia to mount type 1 interferon responses to proinflammatory challenge, particularly the upregulation of a critical type 1 immune response gene,Ifitm3.

    Conclusions

    Our convergent findings provide novel insights into microglial BIN1 function and demonstrate an essential role of microglial BIN1 in regulating brain inflammatory response and microglial phenotypic changes. Moreover, for the first time, our study shows a regulatory relationship betweenBin1andIfitm3, two Alzheimer’s disease-related genes in microglia. The requirement for BIN1 to regulateIfitm3upregulation during inflammation has important implications for inflammatory responses during the pathogenesis and progression of many neurodegenerative diseases.

    Graphical Abstract« less
  3. Administration of FVIII-Expressing Human Placental Cells to Juvenile Sheep Yields Multi-Organ Engraftment, Therapeutic Plasma FVIII Levels and Alter Immune Signaling Pathways to Evade FVIII Inhibitor Induction 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster III Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Immune Mechanism, Diseases, Gene Therapy, Therapies, Adverse Events, Biological Processes, Transplantation Monday, December 13, 2021, 6:00 PM-8:00 PM We have previously reported that normal juvenile sheep that received weekly intravenous (IV) infusions of human (n=3) or an expression/secretion-optimized, bioengineered human/porcine hybrid (ET3) FVIII protein (n=3) for 5 weeks (20 IU/kg) developed anti-FVIII inhibitory antibodies (10-116 BU, and IgG titers of 1:20–1:245) by week 3 of infusion. By contrast, the IV infusion, or IP administration, of human placental mesenchymal cells (PLC) transduced with a lentiviral vector encoding a myeloid codon-optimized ET3 transgene (PLC-mcoET3) to produce high levels of ET3 protein (4.9-6IU/10^6 cells/24h) enabled the delivery of FVIII without eliciting antibodies, despite using PLC-mcoET3 doses that provided ~20-60 IU/kg ET3 each 24h to mirror the amount of FVIII protein infused. In addition, we showed that themore »route of PLC-mcoET3 administration (IP vs IV) did not impact the resultant plasma FVIII levels, with animals in these two groups exhibiting mean increases in FVIII activity (quantified by aPTT) of 30.9% and 34.2%, respectively, at week 15 post-treatment. Here, we investigated whether the sites and levels of PLC-mcoET3 engraftment were dependent upon the route of administration and performed s sheep-specific multiplexed transcriptomic analysis (NanoString) to define the immune signaling pathways that thwarted FVIII/ET3 protein immune response when ET3 was delivered through PLC. Tissue samples were collected from various organs at euthanasia and RT-qPCR performed using primers specific to the mcoET3 transgene, to the human housekeeping transcript GAPDH, and to sheep GAPDH, to quantify PLC-mcoET3 tissue engraftment, and normalize the results. RT-qPCR demonstrated PLC-mcoET3 engrafted, in both IP and IV groups, in all the organs evaluated (liver, lung, lymph nodes, thymus, and spleen). Animals that received PLC-mcoET3 via the IP route displayed higher overall levels of engraftment than their IV counterparts. The spleen was the preferential organ of engraftment for both IP and IV groups (IP:2.41±1.97%; IV: 0.64±0.54%). The IP group exhibited significantly higher engraftment in the left lobe of the liver (IP: 1.36±0.35%; IV: 0.041±0.022%), which was confirmed by immunohisto-chemistry (IHC) with an antibody to the human nuclear antigen Ku80 and ImageJ analysis (IP:5.24±3.36%; IV: 0±0). Of note is that the IP route resulted in higher levels of engraftment in the thymus, while IV infusion yielded higher levels of PLC-mcoET3 in lymph nodes. Analysis of H&E-stained tissues demonstrated they were devoid of any abnormal histologic changes and exhibited no evidence of hyperplasia or neoplasia, supporting the safety of the cell platform, irrespective of the route of administration. To date, NanoString analysis of PBMC collected at day 0, week 1, and week 5 post-infusion demonstrated that animals who received FVIII protein had upregulation of UBA5 and BATF, genes involved in antigen processing and Th17 signaling pathways, respectively. Although both IV and IP recipients of PLC-mcoET3 also had an increase in BATF, the IV group exhibited upregulation of BTLA, a gene involved in immune-tolerance, and downregulation of NOTCH and DDL1, involved in T cell differentiation, as well as MAPK12 and PLCG1, genes involved in proinflammatory cytokine regulation and T signaling within the Th17 signature. In IP recipients, BTLA, NOTCH, and DLL1 were all downregulated. Since ET3-reactive Th1 cells were not present in any of the treated animals, it is possible that the Th17 cells are responsible for the inhibitory antibodies seen in the juvenile sheep treated with FVIII/ET3 protein, while in animals receiving PLC-mcoET3, downregulation of genes involved in T cell differentiation and proinflammatory cytokine signaling keeps the immune system in check to avoid an immune response. Disclosures: Doering: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months. Spencer: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months.« less
  4. ABSTRACT The unfolded protein response (UPR) is involved in the pathogenesis of metabolic disorders, yet whether variations in the UPR among individuals influence the propensity for metabolic disease remains unexplored. Using outbred deer mice as a model, we show that the intensity of UPR in fibroblasts isolated early in life predicts the extent of body weight gain after high-fat diet (HFD) administration. Contrary to those with intense UPR, animals with moderate UPR in fibroblasts and therefore displaying compromised stress resolution did not gain body weight but developed inflammation, especially in the skin, after HFD administration. Fibroblasts emerged as potent modifiers of this differential responsiveness to HFD, as indicated by the comparison of the UPR profiles of fibroblasts responding to fatty acids in vitro, by correlation analyses between UPR and proinflammatory cytokine-associated transcriptomes, and by BiP (also known as HSPA5) immunolocalization in skin lesions from animals receiving HFD. These results suggest that the UPR operates as a modifier of an individual's propensity for body weight gain in a manner that, at least in part, involves the regulation of an inflammatory response by skin fibroblasts. This article has an associated First Person interview with the first author of the paper.
  5. Abstract

    Alzheimer’s disease (AD) manifested before age 65 is commonly referred to as early-onset AD (EOAD) (Reitz et al. Neurol Genet. 2020;6:e512). While the majority (> 90%) of EOAD cases are not caused by autosomal-dominant mutations inPSEN1,PSEN2, andAPP, they do have a higher heritability (92–100%) than sporadic late-onset AD (LOAD, 70%) (Wingo et al. Arch Neurol. 2012;69:59–64, Fulton-Howard et al. Neurobiol Aging. 2021;99:101.e1–101.e9). Although the endpoint clinicopathological changes, i.e., Aβ plaques, tau tangles, and cognitive decline, are common across EOAD and LOAD, the disease progression is highly heterogeneous (Neff et al. Sci Adv Am Assoc Adv Sci. 2021;7:eabb5398). This heterogeneity, leading to temporally distinct age at onset (AAO) and stages of cognitive decline, may be caused by myriad combinations of distinct disease-associated molecular mechanisms. We and others have used transcriptome profiling in AD patient-derived neuron models of autosomal-dominant EOAD and sporadic LOAD to identify disease endotypes (Caldwell et al. Sci Adv Am Assoc Adv Sci. 2020;6:eaba5933, Mertens et al. Cell Stem Cell. 2021;28:1533–1548.e6, Caldwell et al. Alzheimers Demen. 2022). Further, analyses of large postmortem brain cohorts demonstrate that only one-third of AD patients show hallmark disease endotypes like increased inflammation and decreased synaptic signaling (Neff et al. Sci Adv Am Assoc Advmore »Sci. 2021;7:eabb5398). Areas of the brain less affected by AD pathology at early disease stagessuch as the primary visual cortexexhibit similar transcriptomic dysregulation as those regions traditionally affected and, therefore, may offer a view into the molecular mechanisms of AD without the associated inflammatory changes and gliosis induced by pathology (Haroutunian et al. Neurobiol Aging. 2009;30:561–73). To this end, we analyzed AD patient samples from the primary visual cortex (19 EOAD, 20 LOAD) using transcriptomic signatures to identify patient clusters and disease endotypes. Interestingly, although the clusters showed distinct combinations and severity of endotypes, each patient cluster contained both EOAD and LOAD cases, suggesting that AAO may not directly correlate with the identity and severity of AD endotypes.

    « less