skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interference effects in harmonic generation induced by focal phase distribution
We have performed macroscopic calculations for the thin medium or low gas density regime and a central gas jet using microscopic numerical solutions of the time-dependent Schrödinger equation. In the case of a spatial phase distribution for broadband Gaussian pulses with a negative Porras factor, our theoretical results show an interference pattern in the angular distribution of below- and near-threshold harmonics, which is not present for the monochromatic Gouy phase distribution. The interference pattern is due to off-center contributions that are in-phase with those at the central points in the focus. The location of the maxima in the interference pattern can be estimated using the well-known double-slit formula with an effective slit separation.  more » « less
Award ID(s):
1734006
PAR ID:
10250413
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
OSA Continuum
Volume:
4
Issue:
7
ISSN:
2578-7519
Format(s):
Medium: X Size: Article No. 1897
Size(s):
Article No. 1897
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase distribution of Hermite–Gauss (HG) beams generated by a gas laser is investigated experimentally by studying their interference with a plane wave and diffraction by a single slit by selecting pairs of bright lobes with different phases. Experimentally recorded interference and diffraction profiles support HG mode phase profiles expounded on in this paper. We find that the phase difference between one bright lobe and another is not simply zero orπbut increases (or decreases) uniformly in steps ofπas the number of zeros between them increases, in agreement with analytic function theory. An immediate application of this phase profile is that an HG mode can serve as a phase ruler with bright lobes as markers in steps ofπ. 
    more » « less
  2. This article presents a table-top experiment that acquires the interference pattern from single photons passing through a double-slit. The experiment is carried out using the heralded, single-photon experimental setup now affordable and fairly common in advanced instructional laboratories. By scanning a single-photon detector on a translation stage, this experiment is implemented without the need of an expensive gate-intensified CCD camera. The authors compare the acquired single-slit and double-slit interference patterns to predicted ones and include a quantum eraser measurement. The experiments are dramatic demonstrations of wave-particle quantum effects and are excellent additions to the collection of single-photon experiments that have been developed over the past several years for the advanced instructional laboratory curriculum. 
    more » « less
  3. Direct write patterning of high-transition temperature (high-TC) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-TC circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 × 100 μm2. The device is fabricated from a single 35-nm thick YBa2Cu3O7−δ film. A flux concentrating pick-up loop is directly coupled to a 10 nm × 20 μm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 μΦ0/Hz1∕2. The field noise of the magnetometer is 4 pT/Hz1∕2 at 4.2 K. 
    more » « less
  4. Abstract We report the detection of an ionized gas outflow from an X-ray active galactic nucleus hosted in a massive quiescent galaxy in a protocluster at z = 3.09 (J221737.29+001823.4). It is a type-2 QSO with broad ( W 80 > 1000 km s −1 ) and strong ( log ( L [ OIII ] /erg s −1 ) ≈ 43.4) [O iii ] λ λ 4959,5007 emission lines detected by slit spectroscopy in three-position angles using Multi-Object Infra-Red Camera and Spectrograph (MOIRCS) on the Subaru telescope and the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck-I telescope. In the all slit directions, [O iii ] emission is extended to ∼15 physical kpc and indicates a powerful outflow spreading over the host galaxy. The inferred ionized gas mass outflow rate is 22 ± 3 M ⊙ yr −1 . Although it is a radio source, according to the line diagnostics using H β , [O ii ], and [O iii ], photoionization by the central QSO is likely the dominant ionization mechanism rather than shocks caused by radio jets. On the other hand, the spectral energy distribution of the host galaxy is well characterized as a quiescent galaxy that has shut down star formation several hundred Myr ago. Our results suggest a scenario that QSOs are powered after the shutdown of the star formation and help complete the quenching of massive quiescent galaxies at high redshift. 
    more » « less
  5. Previous work has highlighted the difficulties students have when explaining wave behavior. We present an investigation of chemistry students’ understanding of the double-slit experiment, where students were asked to explain a series of PhET simulations illustrating a single continuous light source, single-slit diffraction, and double-slit interference. We observed a variation in student reasoning and students were categorized into groups based on their ability to explain and generate a mechanism for the double-slit experiment. Some students struggled to explain the features of waves which impacted their reasoning about interference and caused them to rely on intuition to generate explanations. Other students were able to productively incorporate their previous knowledge about wave behavior, with their observations from the simulations, to build a robust mechanism for wave interference. However, students generally exhibited a limited understanding of interference, and specifically attending to the key features of waves during instruction can promote more sophisticated reasoning about this phenomenon. 
    more » « less