The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.
Title: Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii)
Abstract New genera are erected for three clades of tapeworms originally discovered using molecular sequence data. The morphological features of each are characterized after examination of specimens with light and scanning electron microscopy. Rockacestus gen. nov. parasitizes skates. Ruhnkebothrium gen. nov. parasitizes hammerhead sharks. Yamaguticestus gen. nov. parasitizes small squaliform sharks and catsharks. The novelty of these genera is supported by a taxonomically comprehensive molecular phylogenetic analysis of the D1–D3 region of the 28S rDNA gene, which, with the addition of newly generated sequence data, is the first to include representation of 15 of the 18 genera of phyllobothriideans plus the three new genera. Five new species are described from elasmobranchs in the western Atlantic Ocean, the Gulf of California, Chile, the Falkland Islands and South Africa to help circumscribe the new genera. Two of the genera provide appropriate generic homes for ten species of phyllobothriideans from catsharks and skates with uncertain generic affinities and thus resolve longstanding taxonomic issues. Given that these genera parasitize some of the most poorly sampled groups of elasmobranchs (i.e. hammerhead sharks, squaliform sharks, catsharks and skates), based on the strict degree of host specificity observed, we predict that further work on other members of these groups will yield as many as 200 additional species in these three genera of tapeworms globally. This brings the total number of genera in the Phyllobothriidea to 21. more »« less
Kang, Ilgoo; Long, Khuat Dang; Sharkey, Michael J.; Whitfield, James B.; Lord, Nathan P.(
, ZooKeys)
null
(Ed.)
For the first time in 21 years, a new genus of cardiochiline braconid wasp, Orientocardiochiles Kang & Long, gen. nov. (type species Orientocardiochiles joeburrowi Kang, sp. nov. ), is discovered and described. This genus represents the ninth genus in the Oriental region. Two new species ( O. joeburrowi Kang, sp. nov. and O. nigrofasciatus Long, sp. nov. ) are described and illustrated, and a key to species of the genus, with detailed images, is added. Diagnostic characters of the new genus are analyzed and compared with several other cardiochiline genera to allow the genus to key out properly using an existing generic treatment. The scientific names validated by this paper and morphological data obtained from this project will be utilized and tested in the upcoming genus-level revision of the subfamily based on combined morphological and molecular data.
The Peruvian genera of Edrotini (Pimeliinae) are revised. A new genus Pachacamacius Flores & Giraldo gen. nov. with two new species, Pachacamacius aguilari Giraldo & Flores sp. nov. (type species) and Pachacamacius koepckeae Flores & Giraldo sp. nov., is described. Two species originally described in the genus ProhylithusKaszab, 1964 are reassigned to two new monotypic genera: Sechuranus Flores and Giraldo gen. nov. (type species Prohylithus barbatusKaszab, 1964) and Koneus Giraldo and Flores, gen. nov. (type species Prohylithus peruanusKaszab, 1981). This article includes diagnoses for five genera and redescriptions or descriptions, distributional data, habitat records and habitus photographs for six species. A dichotomous key for all 11 Peruvian species of Edrotini, drawings of new species' male genitalic features, and distribution maps are also provided. A discussion of the external morphological characters and male genitalia of the new taxa compared to the genera and species previously described and on endemicity and zoogeography of Peruvian Edrotini is presented.
PINEDO-ESCATEL, J. ADILSON; DIETRICH, CHRISTOPHER. H.(
, Zootaxa)
null
(Ed.)
Three new Neotropical athysanine (Deltocephalinae) leafhopper genera, Spaltumtettix Pinedo-Escatel & Dietrich gen. nov., Pseudonapo Pinedo-Escatel & Dietrich gen. nov., and Goiattus Pinedo-Escatel gen. nov., and 4 new species, S. coloradus Pinedo-Escatel & Dietrich sp. nov. (Peru), P. waorani Pinedo-Escatel & Dietrich sp. nov. (Ecuador), P. huanucensis Pinedo-Escatel & Dietrich sp. nov. (Peru), and G. reyesi Pinedo-Escatel sp. nov. (Brazil), are described and illustrated. In addition, the genera Zabrosa Oman, Napo Linnavuori & DeLong, Pseudalaca Linnavuori and Brazosa Oman are revised and redescribed. Six new species are described in Brazosa: B. campinacu Pinedo-Escatel & Dietrich sp. nov. (Brazil), B. espatula Pinedo-Escatel & Dietrich sp. nov. (Brazil), B. encrustada Pinedo-Escatel & Dietrich sp. nov. (Brazil), B. mildredireanae Pinedo-Escatel sp. nov. (Peru), B. negra Pinedo-Escatel & Dietrich sp. nov. (Peru and Bolivia) and B. beni Pinedo-Escatel & Dietrich sp. nov. (Bolivia). Brazosa caesarea Linnavuori & Heller comb. nov. is transferred to Spaltumtettix. The South American species Z. aquareza Linnavuori & DeLong syn. nov. is proposed as junior synonym of Z. unicampi Menezes. Keys to species of each genus are provided. Unusual aspects of the morphology of these genera are discussed and a comparative table is provided.
Xiphosurans are aquatic chelicerates with a fossil record extending into the Early Ordovician and known from a total of 88 described species, four of which are extant. Known for their apparent morphological conservatism, for which they have gained notoriety as supposed ‘living fossils’, recent analyses have demonstrated xiphosurans to have an ecologically diverse evolutionary history, with several groups moving into non-marine environments and developing morphologies markedly different from those of the modern species. The combination of their long evolutionary and complex ecological history along with their paradoxical patterns of morphological stasis in some clades and experimentation among others has resulted in Xiphosura being of particular interest for macroevolutionary study. Phylogenetic analyses have shown the current taxonomic framework for Xiphosura—set out in the Treatise of Invertebrate Paleontology in 1955—to be outdated and in need of revision, with several common genera such as Paleolimulus Dunbar, 1923 and Limulitella Størmer, 1952 acting as wastebasket taxa. Here, an expanded xiphosuran phylogeny is presented, comprising 58 xiphosuran species as part of a 158 taxon chelicerate matrix coded for 259 characters. Analysing the matrix under both Bayesian inference and parsimony optimisation criteria retrieves a concordant tree topology that forms the basis of a genus-level systematic revision of xiphosuran taxonomy. The genera Euproops Meek, 1867, Belinurus König, 1820, Paleolimulus , Limulitella , and Limulus are demonstrated to be non-monophyletic and the previously synonymized genera Koenigiella Raymond, 1944 and Prestwichianella Cockerell, 1905 are shown to be valid. In addition, nine new genera ( Andersoniella gen. nov. , Macrobelinurus gen. nov. , and Parabelinurus gen. nov. in Belinurina; Norilimulus gen. nov. in Paleolimulidae; Batracholimulus gen. nov. and Boeotiaspis gen. nov. in Austrolimulidae; and Allolimulus gen. nov., Keuperlimulus gen. nov., and Volanalimulus gen. nov. in Limulidae) are erected to accommodate xiphosuran species not encompassed by existing genera. One new species, Volanalimulus madagascarensis gen. et sp. nov., is also described. Three putative xiphosuran genera— Elleria Raymond, 1944, Archeolimulus Chlupáč, 1963, and Drabovaspis Chlupáč, 1963—are determined to be non-xiphosuran arthropods and as such are removed from Xiphosura. The priority of Belinurus König, 1820 over Bellinurus Pictet, 1846 is also confirmed. This work is critical for facilitating the study of the xiphosuran fossil record and is the first step in resolving longstanding questions regarding the geographic distribution of the modern horseshoe crab species and whether they truly represent ‘living fossils’. Understanding the long evolutionary history of Xiphosura is vital for interpreting how the modern species may respond to environmental change and in guiding conservation efforts.
Dietrich, Christopher H.; MAGALHÃES, Raysa Brito; Takiya, Daniela M.(
, European Journal of Taxonomy)
null
(Ed.)
The leafhopper tribe Platyjassini, endemic to Madagascar, is revised, largely based on specimens obtained in a recent bioinventory project led by the California Academy of Sciences. Platyjassini was previously known based on the type genus, Platyjassus Evans, 1953, and four described species. Betsileonas marmorata (Blanchard, 1840), the largest leafhopper recorded from Madagascar, presently known from a few specimens collected > 100 years ago and recently considered a genus and species incertae sedis within Cicadellidae, is newly placed in Platyjassini. Fourteen new genera and 54 new species are described and illustrated, and three new combinations are proposed. Pachyjassus gen. nov. includes three new species: Pachyjassus alatus sp. nov., Pachyjassus basifurcatus sp. nov. and Pachyjassus ranomafanensis sp. nov. Pallijassus gen. nov. is erected to include two species previously placed in Platyjassus, Pallijassus reticulatus (Evans, 1959) comb. nov. and Pallijassus stenospatulatus (Evans, 1959) comb. nov. Petalojassus gen. nov. includes one new species, Petalojassus ochrescens sp. nov. Phaiojassus gen. nov. includes seven new species: Phaiojassus acutus sp. nov., Phaiojassus bispinosus sp. nov., Phaiojassus constrictus sp. nov., Phaiojassus grandis sp. nov., Phaiojassus spatulatus sp. nov., Phaiojassus undulatus sp. nov. and Phaiojassus unispinosus sp. nov. Pictojassus gen. nov. includes three new species: Pictojassus kirindiensis sp. nov., Pictojassus productus sp. nov. and Pictojassus tulearensis sp. nov. Platyjassella gen. nov. includes six new species: Platyjassella ancora sp. nov., Platyjassella andohahelensis sp. nov., Platyjassella attenuata sp. nov., Platyjassella cormorana sp. nov., Platyjassella emarginata sp. nov. and Platyjassella immaculata sp. nov. Platyjassula gen. nov. includes four new species: Platyjassula cyclura sp. nov., Platyjassula heterofurca sp. nov., Platyjassula isofurca sp. nov. and Platyjassula mahajangensis sp. nov. In addition to the type species, Platyjassus viridis Evans, 1953, Platyjassus includes 11 new species: Platyjassus acutus sp. nov., Platyjassus asymmetricus sp. nov., Platyjassus fisheri sp. nov., Platyjassus griswoldi sp. nov., Platyjassus harinhalai sp. nov., Platyjassus irwini sp. nov., Platyjassus pedistylus sp. nov., Platyjassus pennyi sp. nov., Platyjassus pictipennis sp. nov., Platyjassus symmetricus sp. nov. and Platyjassus vestigius sp. nov. Plerujassus gen. nov. includes one new species, Plerujassus brunnescens sp. nov., in addition to Plerujassus appendiculatus (Evans, 1959) comb. nov., previously placed in Platyjassus. Plexijassus gen. nov. includes one new species, Plexijassus caliginosus sp. nov. Pseudocurtara gen. nov. includes three new species: Pseudocurtara minima sp. nov., Pseudocurtara nigripicta sp. nov. and Pseudocurtara quadrata sp. nov. Pseudocyrta gen. nov. includes one new species, Pseudocyrta hyalina sp. nov. Pseudomarganana gen. nov. includes two new species: Pseudomarganana olivacea sp. nov. and Pseudomarganana rosea sp. nov. Pulchrijassus gen. nov. includes eight new species: Pulchrijassus anjozorobensis sp. nov., Pulchrijassus eunsunae sp. nov., Pulchrijassus pallescens sp. nov., Pulchrijassus roseus sp. nov., Pulchrijassus rubrilineatus sp. nov., Pulchrijassus sindhuae sp. nov., Pulchrijassus talatakelyensis sp. nov. and Pulchrijassus toamasinensis sp. nov. Punctijassus gen. nov. includes three new species: Punctijassus circularis sp. nov., Punctijassus compressus sp. nov. and Punctijassus ivohibensis sp. nov. Illustrated keys to genera and species are provided.
Caira, Janine N, Bueno, Veronica, and Jensen, Kirsten. Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii). Retrieved from https://par.nsf.gov/biblio/10250497. Zoological Journal of the Linnean Society . Web. doi:10.1093/zoolinnean/zlaa185.
Caira, Janine N, Bueno, Veronica, & Jensen, Kirsten. Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii). Zoological Journal of the Linnean Society, (). Retrieved from https://par.nsf.gov/biblio/10250497. https://doi.org/10.1093/zoolinnean/zlaa185
Caira, Janine N, Bueno, Veronica, and Jensen, Kirsten.
"Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii)". Zoological Journal of the Linnean Society (). Country unknown/Code not available. https://doi.org/10.1093/zoolinnean/zlaa185.https://par.nsf.gov/biblio/10250497.
@article{osti_10250497,
place = {Country unknown/Code not available},
title = {Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii)},
url = {https://par.nsf.gov/biblio/10250497},
DOI = {10.1093/zoolinnean/zlaa185},
abstractNote = {Abstract New genera are erected for three clades of tapeworms originally discovered using molecular sequence data. The morphological features of each are characterized after examination of specimens with light and scanning electron microscopy. Rockacestus gen. nov. parasitizes skates. Ruhnkebothrium gen. nov. parasitizes hammerhead sharks. Yamaguticestus gen. nov. parasitizes small squaliform sharks and catsharks. The novelty of these genera is supported by a taxonomically comprehensive molecular phylogenetic analysis of the D1–D3 region of the 28S rDNA gene, which, with the addition of newly generated sequence data, is the first to include representation of 15 of the 18 genera of phyllobothriideans plus the three new genera. Five new species are described from elasmobranchs in the western Atlantic Ocean, the Gulf of California, Chile, the Falkland Islands and South Africa to help circumscribe the new genera. Two of the genera provide appropriate generic homes for ten species of phyllobothriideans from catsharks and skates with uncertain generic affinities and thus resolve longstanding taxonomic issues. Given that these genera parasitize some of the most poorly sampled groups of elasmobranchs (i.e. hammerhead sharks, squaliform sharks, catsharks and skates), based on the strict degree of host specificity observed, we predict that further work on other members of these groups will yield as many as 200 additional species in these three genera of tapeworms globally. This brings the total number of genera in the Phyllobothriidea to 21.},
journal = {Zoological Journal of the Linnean Society},
author = {Caira, Janine N and Bueno, Veronica and Jensen, Kirsten},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.