skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Recent advances in neural interfaces—Materials chemistry to clinical translation
Implantable neural interfaces are important tools to accelerate neuroscience research and translate clinical neurotechnologies. The promise of a bidirectional communication link between the nervous system of humans and computers is compelling, yet important materials challenges must be first addressed to improve the reliability of implantable neural interfaces. This perspective highlights recent progress and challenges related to arguably two of the most common failure modes for implantable neural interfaces: (1) compromised barrier layers and packaging leading to failure of electronic components; (2) encapsulation and rejection of the implant due to injurious tissue–biomaterials interactions, which erode the quality and bandwidth of signals across the biology–technology interface. Innovative materials and device design concepts could address these failure modes to improve device performance and broaden the translational prospects of neural interfaces. A brief overview of contemporary neural interfaces is presented and followed by recent progress in chemistry, materials, and fabrication techniques to improve in vivo reliability, including novel barrier materials and harmonizing the various incongruences of the tissue–device interface. Challenges and opportunities related to the clinical translation of neural interfaces are also discussed.  more » « less
Award ID(s):
1943906
NSF-PAR ID:
10250568
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
MRS Bulletin
Volume:
45
Issue:
8
ISSN:
0883-7694
Page Range / eLocation ID:
655 to 668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermal management is becoming a critical technology challenge for modern electronics with decreasing device size and increasing power density. One key materials innovation is the development of advanced thermal interfaces in electronic packaging to enable efficient heat dissipation and improve device performance, which has attracted intensive research efforts from both academia and industry over the past several decades. Here we review the recent progress in both theory and experiment for developing high-performance thermal interface materials. First, the basic theories and computational frameworks for interface energy transport are discussed, ranging from atomistic interface scattering to multiscale disorders that contributed to thermal boundary resistance. Second, state-of-the-art experimental techniques including steady-state and transient thermal measurements are discussed and compared. Moreover, the important structure design, requirements, and property factors for thermal interface materials depending on different applications are summarized and exemplified with the recent literature. Finally, emerging new semiconductors and polymers with high thermal conductivity are briefly reviewed and opportunities for future research are discussed. 
    more » « less
  2. null (Ed.)
    New device architectures favorable for interaction with the soft and dynamic biological tissue are critical for the design of indwelling biosensors and neural interfaces. For the long-term use of such devices within the body, it is also critical that the component materials resist the physiological harsh mechanical and chemical conditions. Here, we describe the design and fabrication of mechanically and chemically robust 3D implantable electronics. This is achieved by using traditional photolithography to pattern electronics on liquid crystal elastomers (LCEs), a class of shape programmable materials. The chemical durability of LCE is evaluated under accelerated in vitro conditions simulating the physiological environment; for example, LCE exhibits less than 1% mass change under a hydrolytic medium simulating >1 year in vivo . By employing twisted nematic LCEs as dynamic substrates, we demonstrate electronics that are fabricated on planar substrates but upon release morph into programmed 3D shapes. These shapes are designed to enable intrinsically low failure strain materials to be extrinsically stretchable. For example, helical multichannel cables for electrode arrays withstand cyclic stretching and buckling over 10 000 cycles at 60% strain while being soaked in phosphate-buffered saline. We envision that these LCE-based electronics can be used for applications in implantable neural interfaces and biosensors. 
    more » « less
  3.  
    more » « less
  4. Abstract

    After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants—specifically those that interface with skeletal muscle—which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the “bio‐amplification” capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state‐of‐the‐art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long‐term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day‐to‐day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.

     
    more » « less
  5. Abstract

    Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices can provide next‐generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing‐based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform can ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.

     
    more » « less