skip to main content

Title: Non-thermal filaments from the tidal destruction of clouds in the Galactic centre
ABSTRACT Synchrotron-emitting, non-thermal filaments (NTFs) have been observed near the Galactic centre for nearly four decades, yet their physical origin remains unclear. Here we investigate the possibility that NTFs are produced by the destruction of molecular clouds by the gravitational potential of the Galactic centre. We show that this model predicts the formation of a filamentary structure with length on the order of tens to hundreds of pc, a highly ordered magnetic field along the axis of the filament, and conditions conducive to magnetic reconnection that result in particle acceleration. This model therefore yields the observed magnetic properties of NTFs and a population of relativistic electrons, without the need to appeal to a dipolar, ∼mG, Galactic magnetic field. As the clouds can be both completely or partially disrupted, this model provides a means of establishing the connection between filamentary structures and molecular clouds that is observed in some, but not all, cases.
; ;
Award ID(s):
2008101 2006684
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
1868 to 1877
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the backgroundmore »magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core–field orientation could be used to probe the relative significance of the magnetic field within the cloud.« less
  2. Context. The role of large-scale magnetic fields in the evolution of star-forming regions remains elusive. Its investigation requires the observational characterization of well-constrained molecular clouds. The Monoceros OB 1 molecular cloud is a large complex containing several structures that have been shown to be engaged in an active interaction and to have a rich star formation history. However, the magnetic fields in this region have only been studied on small scales. Aims. We study the large-scale magnetic field structure and its interplay with the gas dynamics in the Monoceros OB 1 east molecular cloud. Methods. We combined observations of dust polarized emission from the Planck telescope and CO molecular line emission observations from the Taeduk Radio Astronomy Observatory 14-metre telescope. We calculated the strength of the plane-of-sky magnetic field using a modified Chandrasekhar-Fermi method and estimated the mass-over-flux ratios in different regions of the cloud. We used the comparison of the velocity and intensity gradients of the molecular line observations with the polarimetric observations to trace dynamically active regions. Results. The molecular complex shows an ordered large-scale plane-of-sky magnetic field structure. In the northern part, it is mostly orientated along the filamentary structures, while the southern part shows at leastmore »two regions with distinct magnetic field orientations. Our analysis reveals a shock region in the northern part right between two filamentary clouds that, in previous studies, were suggested to be involved in a collision. The magnetic properties of the north-main and north-eastern filaments suggest that these filaments once formed a single one, and that the magnetic field evolved together with the material and did not undergo major changes during the evolution of the cloud. In the southern part, we find that either the magnetic field guides the accretion of interstellar matter towards the cloud or it is dragged by the matter falling towards the main cloud. Conclusions. The large-scale magnetic field in the Monoceros OB 1 east molecular cloud is tightly connected to the global structure of the complex. In the northern part, it seems to serve a dynamically important role by possibly providing support against gravity in the direction perpendicular to the field and to the filament. In the southern part, it is probably the most influential factor governing the morphological structure by guiding possible gas inflow. A study of the whole Monoceros OB 1 molecular complex at large scales is necessary to form a global picture of the formation and evolution of the Monoceros OB 1 east cloud and the role of the magnetic field in this process.« less
  3. Context. We started a multi-scale analysis of star formation in G202.3+2.5, an intertwined filamentary sub-region of the Monoceros OB1 molecular complex, in order to provide observational constraints on current theories and models that attempt to explain star formation globally. In the first paper (Paper I), we examined the distributions of dense cores and protostars and found enhanced star formation activity in the junction region of the filaments. Aims. In this second paper, we aim to unveil the connections between the core and filament evolutions, and between the filament dynamics and the global evolution of the cloud. Methods. We characterise the gas dynamics and energy balance in different parts of G202.3+2.5 using infrared observations from the Herschel and WISE telescopes and molecular tracers observed with the IRAM 30-m and TRAO 14-m telescopes. The velocity field of the cloud is examined and velocity-coherent structures are identified, characterised, and put in perspective with the cloud environment. Results. Two main velocity components are revealed, well separated in radial velocities in the north and merged around the location of intense N 2 H + emission in the centre of G202.3+2.5 where Paper I found the peak of star formation activity. We show that the relativemore »position of the two components along the sightline, and the velocity gradient of the N 2 H + emission imply that the components have been undergoing collision for ~10 5 yr, although it remains unclear whether the gas moves mainly along or across the filament axes. The dense gas where N 2 H + is detected is interpreted as the compressed region between the two filaments, which corresponds to a high mass inflow rate of ~1 × 10 −3 M ⊙ yr −1 and possibly leads to a significant increase in its star formation efficiency. We identify a protostellar source in the junction region that possibly powers two crossed intermittent outflows. We show that the H  II region around the nearby cluster NCG 2264 is still expanding and its role in the collision is examined. However, we cannot rule out the idea that the collision arises mostly from the global collapse of the cloud. Conclusions. The (sub-)filament-scale observables examined in this paper reveal a collision between G202.3+2.5 sub-structures and its probable role in feeding the cores in the junction region. To shed more light on this link between core and filament evolutions, one must characterise the cloud morphology, its fragmentation, and magnetic field, all at high resolution. We consider the role of the environment in this paper, but a larger-scale study of this region is now necessary to investigate the scenario of a global cloud collapse.« less
  4. Context. The excitation of the filamentary gas structures surrounding giant elliptical galaxies at the center of cool-core clusters, also known as brightest cluster galaxies (BCGs), is key to our understanding of active galactic nucleus (AGN) feedback, and of the impact of environmental and local effects on star formation. Aims. We investigate the contribution of thermal radiation from the cooling flow surrounding BCGs to the excitation of the filaments. We explore the effects of small levels of extra heating (turbulence), and of metallicity, on the optical and infrared lines. Methods. Using the C LOUDY code, we modeled the photoionization and photodissociation of a slab of gas of optical depth A V  ≤ 30 mag at constant pressure in order to calculate self-consistently all of the gas phases, from ionized gas to molecular gas. The ionizing source is the extreme ultraviolet (EUV) and soft X-ray radiation emitted by the cooling gas. We tested these models comparing their predictions to the rich multi-wavelength observations from optical to submillimeter, now achieved in cool core clusters. Results. Such models of self-irradiated clouds, when reaching sufficiently large A V , lead to a cloud structure with ionized, atomic, and molecular gas phases. These models reproduce most ofmore »the multi-wavelength spectra observed in the nebulae surrounding the BCGs, not only the low-ionization nuclear emission region like optical diagnostics, [O  III ] λ 5007 Å/H β , [N  II ] λ 6583 Å/H α , and ([S  II ] λ 6716 Å+[S  II ] λ 6731 Å)/H α , but also the infrared emission lines from the atomic gas. [O  I ] λ 6300 Å/H α , instead, is overestimated across the full parameter space, except for very low A V . The modeled ro-vibrational H 2 lines also match observations, which indicates that near- and mid-infrared H 2 lines are mostly excited by collisions between H 2 molecules and secondary electrons produced naturally inside the cloud by the interaction between the X-rays and the cold gas in the filament. However, there is still some tension between ionized and molecular line tracers (i.e., CO), which requires optimization of the cloud structure and the density of the molecular zone. The limited range of parameters over which predictions match observations allows us to constrain, in spite of degeneracies in the parameter space, the intensity of X-ray radiation bathing filaments, as well as some of their physical properties like A V or the level of turbulent heating rate. Conclusions. The reprocessing of the EUV and X-ray radiation from the plasma cooling is an important powering source of line emission from filaments surrounding BCGs. C LOUDY self-irradiated X-ray excitation models coupled with a small level of turbulent heating manage to simultaneously reproduce a large number of optical-to-infrared line ratios when all the gas phases (from ionized to molecular) are modeled self-consistently. Releasing some of the simplifications of our model, like the constant pressure, or adding the radiation fields from the AGN and stars, as well as a combination of matter- and radiation-bounded cloud distribution, should improve the predictions of line emission from the different gas phases.« less

    Radiation-dust driven outflows, where radiation pressure on dust grains accelerates gas, occur in many astrophysical environments. Almost all previous numerical studies of these systems have assumed that the dust was perfectly coupled to the gas. However, it has recently been shown that the dust in these systems is unstable to a large class of ‘resonant drag instabilities’ (RDIs) which de-couple the dust and gas dynamics and could qualitatively change the non-linear outcome of these outflows. We present the first simulations of radiation-dust driven outflows in stratified, inhomogeneous media, including explicit grain dynamics and a realistic spectrum of grain sizes and charge, magnetic fields and Lorentz forces on grains (which dramatically enhance the RDIs), Coulomb and Epstein drag forces, and explicit radiation transport allowing for different grain absorption and scattering properties. In this paper, we consider conditions resembling giant molecular clouds (GMCs), H ii regions, and distributed starbursts, where optical depths are modest (≲1), single-scattering effects dominate radiation-dust coupling, Lorentz forces dominate over drag on grains, and the fastest-growing RDIs are similar, such as magnetosonic and fast-gyro RDIs. These RDIs generically produce strong size-dependent dust clustering, growing non-linear on time-scales that are much shorter than the characteristic times of the outflow.more »The instabilities produce filamentary and plume-like or ‘horsehead’ nebular morphologies that are remarkably similar to observed dust structures in GMCs and H ii regions. Additionally, in some cases they strongly alter the magnetic field structure and topology relative to filaments. Despite driving strong micro-scale dust clumping which leaves some gas ‘behind,’ an order-unity fraction of the gas is always efficiently entrained by dust.

    « less