skip to main content


Title: Automated High-Resolution Time Series Mapping of Mangrove Forests Damaged by Hurricane Irma in Southwest Florida
In September of 2017, Hurricane Irma made landfall within the Rookery Bay National Estuarine Research Reserve of southwest Florida (USA) as a category 3 storm with winds in excess of 200 km h−1. We mapped the extent of the hurricane’s impact on coastal land cover with a seasonal time series of satellite imagery. Very high-resolution (i.e., <5 m pixel) satellite imagery has proven effective to map wetland ecosystems, but challenges in data acquisition and storage, algorithm training, and image processing have prevented large-scale and time-series mapping of these data. We describe our approach to address these issues to evaluate Rookery Bay ecosystem damage and recovery using 91 WorldView-2 satellite images collected between 2010 and 2018 mapped using automated techniques and validated with a field campaign. Land cover was classified seasonally at 2 m resolution (i.e., healthy mangrove, degraded mangrove, upland, soil, and water) with an overall accuracy of 82%. Digital change detection methods show that hurricane-related degradation was 17% of mangrove forest (~5 km2). Approximately 35% (1.7 km2) of this loss recovered one year after Hurricane Irma. The approach completed the mapping approximately 200 times faster than existing methods, illustrating the ease with which regional high-resolution mapping may be accomplished efficiently.  more » « less
Award ID(s):
1762493
PAR ID:
10250603
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
11
ISSN:
2072-4292
Page Range / eLocation ID:
1740
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Coastal mangrove forests provide important ecosystem goods and services, including carbon sequestration, biodiversity conservation, and hazard mitigation. However, they are being destroyed at an alarming rate by human activities. To characterize mangrove forest changes, evaluate their impacts, and support relevant protection and restoration decision making, accurate and up-to-date mangrove extent mapping at large spatial scales is essential. Available large-scale mangrove extent data products use a single machine learning method commonly with 30 m Landsat imagery, and significant inconsistencies remain among these data products. With huge amounts of satellite data involved and the heterogeneity of land surface characteristics across large geographic areas, finding the most suitable method for large-scale high-resolution mangrove mapping is a challenge. The objective of this study is to evaluate the performance of a machine learning ensemble for mangrove forest mapping at 20 m spatial resolution across West Africa using Sentinel-2 (optical) and Sentinel-1 (radar) imagery. The machine learning ensemble integrates three commonly used machine learning methods in land cover and land use mapping, including Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network (NN). The cloud-based big geospatial data processing platform Google Earth Engine (GEE) was used for pre-processing Sentinel-2 and Sentinel-1 data. Extensive validation has demonstrated that the machine learning ensemble can generate mangrove extent maps at high accuracies for all study regions in West Africa (92%–99% Producer’s Accuracy, 98%–100% User’s Accuracy, 95%–99% Overall Accuracy). This is the first-time that mangrove extent has been mapped at a 20 m spatial resolution across West Africa. The machine learning ensemble has the potential to be applied to other regions of the world and is therefore capable of producing high-resolution mangrove extent maps at global scales periodically. 
    more » « less
  2. High resolution mapping of coastal habitats is invaluable for resource inventory, change detection, and inventory of aquaculture applications. However, coastal areas, especially the interior of mangroves, are often difficult to access. An Unmanned Aerial Vehicle (UAV), equipped with a multispectral sensor, affords an opportunity to improve upon satellite imagery for coastal management because of the very high spatial resolution, multispectral capability, and opportunity to collect real-time observations. Despite the recent and rapid development of UAV mapping applications, few articles have quantitatively compared how much improvement there is of UAV multispectral mapping methods compared to more conventional remote sensing data such as satellite imagery. The objective of this paper is to quantitatively demonstrate the improvements of a multispectral UAV mapping technique for higher resolution images used for advanced mapping and assessing coastal land cover. We performed multispectral UAV mapping fieldwork trials over Indian River Lagoon along the central Atlantic coast of Florida. Ground Control Points (GCPs) were collected to generate a rigorous geo-referenced dataset of UAV imagery and support comparison to geo-referenced satellite and aerial imagery. Multi-spectral satellite imagery (Sentinel-2) was also acquired to map land cover for the same region. NDVI and object-oriented classification methods were used for comparison between UAV and satellite mapping capabilities. Compared with aerial images acquired from Florida Department of Environmental Protection, the UAV multi-spectral mapping method used in this study provided advanced information of the physical conditions of the study area, an improved land feature delineation, and a significantly better mapping product than satellite imagery with coarser resolution. The study demonstrates a replicable UAV multi-spectral mapping method useful for study sites that lack high quality data. 
    more » « less
  3. null (Ed.)
    Seagrasses are threatened worldwide due to anthropogenic and natural disturbances disrupting the multiple feedbacks needed to maintain these ecosystems. If the disturbance is severe enough, seagrass systems may undergo a regime shift to a degraded system state that is resistant to recovery. In Florida Bay, Florida, United States, two recent, large-scale disturbances (a drought-induced seagrass die-off in 2015 and Hurricane Irma in 2017) have caused 8,777 ha of seagrass beds to degrade into a turbid, unvegetated state, causing a large sediment plume. Using satellite imagery digitization and long-term seagrass cover data, we investigate the expansion of this sediment plume between 2008 and 2020 and the potential interaction of this sediment plume with seagrass recovery in two focal basins in Florida Bay affected by the die-off, Johnson and Rankin. The average size of the sediment plume increased by 37% due to the die-off and Hurricane Irma, increasing from an average of 163.5 km 2 before the disturbances to an average of 223.5 km 2 . The expansion of the plume was basin-specific, expanding into Johnson after the 2015 seagrass die-off with expansive and long-lasting effects, but only expanding into Rankin after Hurricane Irma with less severe and short-term effects. Furthermore, the sediment plume was negatively correlated with seagrass cover in Johnson, but held no relationship with seagrass cover in Rankin. Thus, different disturbances can act upon seagrass ecosystems at varying scales with varying consequences. This study illustrates the advantage of combining satellite imagery with field data to monitor disturbances as well as highlights the importance of investigating disturbances of seagrass ecosystems at various scales to comprehend seagrass resilience in the context of future extreme events. 
    more » « less
  4. State-of-the-art deep learning technology has been successfully applied to relatively small selected areas of very high spatial resolution (0.15 and 0.25 m) optical aerial imagery acquired by a fixed-wing aircraft to automatically characterize ice-wedge polygons (IWPs) in the Arctic tundra. However, any mapping of IWPs at regional to continental scales requires images acquired on different sensor platforms (particularly satellite) and a refined understanding of the performance stability of the method across sensor platforms through reliable evaluation assessments. In this study, we examined the transferability of a deep learning Mask Region-Based Convolutional Neural Network (R-CNN) model for mapping IWPs in satellite remote sensing imagery (~0.5 m) covering 272 km2 and unmanned aerial vehicle (UAV) (0.02 m) imagery covering 0.32 km2. Multi-spectral images were obtained from the WorldView-2 satellite sensor and pan-sharpened to ~0.5 m, and a 20 mp CMOS sensor camera onboard a UAV, respectively. The training dataset included 25,489 and 6022 manually delineated IWPs from satellite and fixed-wing aircraft aerial imagery near the Arctic Coastal Plain, northern Alaska. Quantitative assessments showed that individual IWPs were correctly detected at up to 72% and 70%, and delineated at up to 73% and 68% F1 score accuracy levels for satellite and UAV images, respectively. Expert-based qualitative assessments showed that IWPs were correctly detected at good (40–60%) and excellent (80–100%) accuracy levels for satellite and UAV images, respectively, and delineated at excellent (80–100%) level for both images. We found that (1) regardless of spatial resolution and spectral bands, the deep learning Mask R-CNN model effectively mapped IWPs in both remote sensing satellite and UAV images; (2) the model achieved a better accuracy in detection with finer image resolution, such as UAV imagery, yet a better accuracy in delineation with coarser image resolution, such as satellite imagery; (3) increasing the number of training data with different resolutions between the training and actual application imagery does not necessarily result in better performance of the Mask R-CNN in IWPs mapping; (4) and overall, the model underestimates the total number of IWPs particularly in terms of disjoint/incomplete IWPs. 
    more » « less
  5. Abstract

    Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m). Mangroves on well-drained sites (83%) resprouted new leaves within one year after the storm. By contrast, in poorly-drained inland sites, we detected one of the largest mangrove diebacks on record (10,760 ha), triggered by Irma. We found evidence that the combination of low elevation (median = 9.4 cm asl), storm surge water levels (>1.4 m above the ground surface), and hydrologic isolation drove coastal forest vulnerability and were independent of tree height or wind exposure. Our results indicated that storm surge and ponding caused dieback, not wind. Tidal restoration and hydrologic management in these vulnerable, low-lying coastal areas can reduce mangrove mortality and improve resilience to future cyclones.

     
    more » « less