skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electric Mode Excitation in the Atmosphere by Magnetospheric Impulses and ULF Waves
Variations of vertical atmospheric electric field E z have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, E z . Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in E z gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH 0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of E z well exceeding the atmospheric potential gradient. We have examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed E z disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH 0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak E z response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations.  more » « less
Award ID(s):
1744828
PAR ID:
10250652
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
8
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An earthquake is a seismic event resulting from a sudden release of energy in the lithosphere, which produces waves that can propagate through the atmosphere into the ionosphere, causing ionospheric disturbances, and excites an additional electric field in the lower ionosphere. Two large-scale traveling ionospheric disturbances (LSTIDs) at daytime Turkey longitudes were found, with phase speeds of 534 and 305 m/s, respectively, after the second strong earthquake at 10:24 UT on 6 February 2023. During strong earthquakes, the equatorial ionospheric currents including the E-region equatorial electrojet (EEJ) and F-region ionospheric radial current (IRC) might be perturbed. At the Tatuoca station in Brazil, we observed a stronger-than-usual horizontal magnetic field associated with the EEJ, with a magnitude of ~100 nT. EEJ perturbations are mainly controlled by neutral winds, especially zonal winds. In the equatorial F-region, a wave perturbation of the IRC was caused by a balance of the electric field generated by the zonal winds at ~15° MLat, the F-region local winds driven by atmospheric resonance, and the additional polarization electric field. Our findings better the understanding of the complex interplay between seismic events and ionospheric current disturbances. 
    more » « less
  2. A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: the “voltage generator” (ionospheric electric fields/voltages are constant, while current varies) and the “current generator” (current is constant, while the electric field varies). Here we indicate another aspect of the magnetosphere-ionosphere interaction, which should be taken into account when considering the current/voltage dichotomy. We show that nonsteady field-aligned currents interact with the ionosphere in a different way depending on a forced driving or resonant excitation. A quasi-DC driving of field-aligned current corresponds to a voltage generator, when the ground magnetic response is proportional to the ionospheric Hall conductance. The excitation of resonant field line oscillations corresponds to the current generator, when the ground magnetic response only weakly depends on the ionospheric conductance. According to the suggested conception, quasi-DC nonresonant disturbances correspond to a voltage generator. Such ultralow frequency (ULF) phenomena as traveling convection vortices and Pc5 waves should be considered as the resonant response of magnetospheric field lines, and they correspond to a current generator. However, there are quite a few factors that may obscure the determination of the current/voltage dichotomy. 
    more » « less
  3. Abstract A circuit analogy for magnetosphere‐ionosphere current systems has two extremes for drivers of ionospheric currents: the “voltage generator” (ionospheric electric fields/voltages are constant, while current varies) and the “current generator” (current is constant, while the electric field varies). Here we indicate another aspect of the magnetosphere‐ionosphere interaction, which should be taken into account when considering the current/voltage dichotomy. We show that nonsteady field‐aligned currents interact with the ionosphere in a different way depending on a forced driving or resonant excitation. A quasi‐DC driving of field‐aligned current corresponds to a voltage generator, when the ground magnetic response is proportional to the ionospheric Hall conductance. The excitation of resonant field line oscillations corresponds to the current generator, when the ground magnetic response only weakly depends on the ionospheric conductance. According to the suggested conception, quasi‐DC nonresonant disturbances correspond to a voltage generator. Such ultralow frequency (ULF) phenomena as traveling convection vortices and Pc5 waves should be considered as the resonant response of magnetospheric field lines, and they correspond to a current generator. However, there are quite a few factors that may obscure the determination of the current/voltage dichotomy. 
    more » « less
  4. Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We observed peak‐to‐peak dTEC amplitudes reaching 0.5 TECU (1 TECU is equal to electrons/) with modulations spanning scales of 5–100 km. The cross‐correlation between our modeled and observed dTEC reached 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation, addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves. 
    more » « less
  5. Abstract Ultralow frequency (ULF) electromagnetic waves are regularly detected by satellites near the plasmapause during substorms. Usually, the small‐scale waves are observed embedded in the large‐scale, quasi‐stationary electric field. We suggest that the small‐scale waves are generated in the ionosphere by the interactions between the large‐scale field and irregularities in the ionospheric density/conductivity. Under certain conditions, these waves can be trapped in the global magnetospheric resonator and amplified by the positive feedback interactions with the ionosphere. To verify this hypothesis, we model with a two‐fluid magnetohydrodynamics code structure and amplitude of the ULF waves simultaneously observed near the plasmapause by the Defense Meteorological Satellite Program satellite at low altitudes and the Combined Release and Radiation Effects satellite at high altitudes. Simulations reproduce in good, quantitative detail the structure and amplitude of the observed waves. In particular, simulations reproduce a “spiky” character of the electric field observed by the Defense Meteorological Satellite Program satellite at low altitude, which is a characteristic feature of ULF waves produced by the ionospheric feedback instability. 
    more » « less