skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying low fluence ion implants in diamond-like carbon film by secondary ion mass spectrometry by understanding matrix effects
Minor and trace elements in diamond-like carbon (DLC) are difficult to quantify using SIMS analysis because minor elemental and structural variations can result in major matrix effects even across individual, cm-sized samples. While this material is most commonly used for tribological coatings where minor element composition is not of critical importance, it is being increasingly used in electronic devices. However, it is a unique application that spurred this work: anhydrous, tetrahedrally-coordinated DLC (ta-C) was used as a solar wind (SW) collector material in the Genesis solar-wind sample return mission (NASA Discovery 5). So, for ∼15 years, we have been working on attaining accurate and precise measurement of minor and trace elements in the Genesis DLC using SIMS to achieve our mission goals. Specifically, we have learned to deal with relevant matrix effects in our samples, ion implants into ta-C. Our unknown element for quantification is SW Mg, a low-dose (1.67 × 10 12 at cm −2 ; ∼6 μg g −1 24 Mg), low-energy (∼24 keV average energy) implant; our standard is a high-dose (∼1 × 10 14 at cm −2 of both 25 Mg, 26 Mg) 75 keV laboratory implant for which the absolute 26 Mg/ 25 Mg ratio had been measured to account for variable instrumental mass fractionation. Analyses were performed using O 2 + primary ions having both a low impact energy and a current density of ∼2 × 10 14 ions per cm 2 . Although our unknown was solar wind, the method is applicable to many situations where minor elements in DLC need to be quantified. Recommendations are presented for modifying this data-reduction technique for other SIMS conditions.  more » « less
Award ID(s):
1819550
PAR ID:
10250723
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Analytical Atomic Spectrometry
Volume:
36
Issue:
1
ISSN:
0267-9477
Page Range / eLocation ID:
194 to 209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. RationaleBack‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low‐fluence, shallow features even if matrix effects are a concern. MethodsImplanted Na (<2.0 × 1011ions/cm2, peaking <50 nm) in diamond‐like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back‐side‐thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f‐GEO SIMS in depth‐profiling mode. ResultsBack‐side‐implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back‐side technique itself. ConclusionsCombining back‐side depth profiling with back‐side‐implanted internal standards aides quantification of shallow mono‐ and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times. 
    more » « less
  2. Abstract NASA's Genesis Mission returned solar wind (SW) to the Earth for analysis to derive the composition of the solar photosphere from solar material.SWanalyses control the precision of the derived solar compositions, but their ultimate accuracy is limited by the theoretical or empirical models of fractionation due toSWformation. Mg isotopes are “ground truth” for these models since, except forCAIs, planetary materials have a uniform Mg isotopic composition (within ≤1‰) so any significant isotopic fractionation ofSWMg is primarily that ofSWformation and subsequent acceleration through the corona. This study analyzed Mg isotopes in a bulkSWdiamond‐like carbon (DLC) film on silicon collector returned by the Genesis Mission. A novel data reduction technique was required to account for variable ion yield and instrumental mass fractionation (IMF) in theDLC. The resultingSWMg fractionation relative to theDSM‐3 laboratory standard was (−14.4‰, −30.2‰) ± (4.1‰, 5.5‰), where the uncertainty is 2ơSEof the data combined with a 2.5‰ (total) error in theIMFdetermination. Two of theSWfractionation models considered generally agreed with our data. Their possible ramifications are discussed for O isotopes based on theCAInebular composition of McKeegan et al. (2011). 
    more » « less
  3. Abstract Solar wind Fe and Mg fluences (atoms/cm2) were measured from Genesis collectors. Fe and Mg have similar first ionization potentials and solar wind Fe/Mg should equal the solar ratio. Solar wind Fe/Mg is a more valid measure of solar composition than CI chondrites and can be measured more accurately than spectroscopic photospheric abundances. Mg and Fe fluences analyzed in four laboratories give satisfactory agreement. Si and diamond‐like carbon collector fluences agree for both elements. The Mg and Fe fluences are 1.731 ± 0.073 × 1012and 1.366 ± 0.058 × 1012atoms/cm2. All plausible sources of errors down to the 1% level are documented. Our value for the solar system Fe/Mg, 0.789 ± 0.048 agrees within 1 sigma errors with CI chondrites, spectroscopic photospheric abundances, and with the solar wind data from the ACE spacecraft. CI samples from asteroid Ryugu give Fe/Mg in agreement with Genesis and meteoritic CI samples despite very small sample sizes. The higher accuracy of the Genesis solar Fe/Mg permits a comparison with chondritic Fe/Mg at the 10% level. Intermeteorite Fe/Mg averages differ among the main C chondrite groups but are within, or very close to, the ±1 sigma Genesis solar Fe/Mg. 
    more » « less
  4. Abstract Nonthermal, pickup ions (PUIs) represent an energetic component of the solar wind (SW). While a number of theoretical models have been proposed to describe the PUI flow, of major importance are in situ measurements providing us with the vital source of model validation. The Solar Wind Ion Composition Spectrometer (SWICS) instrument on board the Ulysses spacecraft was specifically designed for this purpose. Zhang et al. proposed a new, accurate method for the derivation of ion velocity distribution function in the SW frame on the basis of count rates collected by SWICS. We calculate the moments of these distribution functions for protons (H + ) and He + ions along the Ulysses trajectory for a period of 2 months including the Halloween 2003 solar storm. This gives us the time distributions of PUI density and temperature. We compare these with the results obtained earlier for the same interval of time, in which the ion spectra are converted to the SW frame using the narrow-beam approximation. Substantial differences are identified, which are of importance for the interpretation of PUI distributions in the 3D, time-dependent heliosphere. We also choose one of the shocks crossed by Ulysses during this time interval and analyze the distribution functions and PUI bulk properties in front of and behind it. The results are compared with the test-particle calculations and diffusive shock acceleration theory. 
    more » « less
  5. Abstract Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are frequently observed in Earth's foreshock, which can significantly disturb the bow shock and therefore the magnetosphere‐ionosphere system and can accelerate particles. Previous statistical studies have identified the solar wind conditions (high solar wind speed and high Mach number, etc.) that favor their generation. However, backstreaming foreshock ions are expected to most directly control how HFAs and FBs form, whereas the solar wind may partake in the formation process indirectly by determining foreshock ion properties. Using Magnetospheric Multiscale mission and Time History of Events and Macroscale Interactions during Substorms mission, we perform a statistical study of foreshock ion properties around 275 HFAs and FBs. We show that foreshock ions with a high foreshock‐to‐solar wind density ratio (>∼3%), high kinetic energy (>∼600 eV), large ratio of kinetic energy to thermal energy (>∼0.1), and large ratio of perpendicular temperature to parallel temperature (>∼1.4) favor HFA and FB formation. We also examine how these properties are related to solar wind conditions: high solar wind speed and oblique bow shock (angle between the interplanetary magnetic field and the bow shock normal) favor high kinetic energy of foreshock ions; foreshock ions have large ratio of kinetic energy to thermal energy at large(>30°); small(<30°), high Mach number, and closeness to the bow shock favor a high foreshock‐to‐solar wind density ratio. Our results provide further understanding of HFA and FB formation. 
    more » « less