Abstract NASA's Genesis Mission returned solar wind (SW) to the Earth for analysis to derive the composition of the solar photosphere from solar material.SWanalyses control the precision of the derived solar compositions, but their ultimate accuracy is limited by the theoretical or empirical models of fractionation due toSWformation. Mg isotopes are “ground truth” for these models since, except forCAIs, planetary materials have a uniform Mg isotopic composition (within ≤1‰) so any significant isotopic fractionation ofSWMg is primarily that ofSWformation and subsequent acceleration through the corona. This study analyzed Mg isotopes in a bulkSWdiamond‐like carbon (DLC) film on silicon collector returned by the Genesis Mission. A novel data reduction technique was required to account for variable ion yield and instrumental mass fractionation (IMF) in theDLC. The resultingSWMg fractionation relative to theDSM‐3 laboratory standard was (−14.4‰, −30.2‰) ± (4.1‰, 5.5‰), where the uncertainty is 2ơSEof the data combined with a 2.5‰ (total) error in theIMFdetermination. Two of theSWfractionation models considered generally agreed with our data. Their possible ramifications are discussed for O isotopes based on theCAInebular composition of McKeegan et al. (2011).
more »
« less
Quantifying low fluence ion implants in diamond-like carbon film by secondary ion mass spectrometry by understanding matrix effects
Minor and trace elements in diamond-like carbon (DLC) are difficult to quantify using SIMS analysis because minor elemental and structural variations can result in major matrix effects even across individual, cm-sized samples. While this material is most commonly used for tribological coatings where minor element composition is not of critical importance, it is being increasingly used in electronic devices. However, it is a unique application that spurred this work: anhydrous, tetrahedrally-coordinated DLC (ta-C) was used as a solar wind (SW) collector material in the Genesis solar-wind sample return mission (NASA Discovery 5). So, for ∼15 years, we have been working on attaining accurate and precise measurement of minor and trace elements in the Genesis DLC using SIMS to achieve our mission goals. Specifically, we have learned to deal with relevant matrix effects in our samples, ion implants into ta-C. Our unknown element for quantification is SW Mg, a low-dose (1.67 × 10 12 at cm −2 ; ∼6 μg g −1 24 Mg), low-energy (∼24 keV average energy) implant; our standard is a high-dose (∼1 × 10 14 at cm −2 of both 25 Mg, 26 Mg) 75 keV laboratory implant for which the absolute 26 Mg/ 25 Mg ratio had been measured to account for variable instrumental mass fractionation. Analyses were performed using O 2 + primary ions having both a low impact energy and a current density of ∼2 × 10 14 ions per cm 2 . Although our unknown was solar wind, the method is applicable to many situations where minor elements in DLC need to be quantified. Recommendations are presented for modifying this data-reduction technique for other SIMS conditions.
more »
« less
- Award ID(s):
- 1819550
- PAR ID:
- 10250723
- Date Published:
- Journal Name:
- Journal of Analytical Atomic Spectrometry
- Volume:
- 36
- Issue:
- 1
- ISSN:
- 0267-9477
- Page Range / eLocation ID:
- 194 to 209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hot flow anomalies (HFAs) and foreshock bubbles (FBs) are frequently observed in Earth's foreshock, which can significantly disturb the bow shock and therefore the magnetosphere‐ionosphere system and can accelerate particles. Previous statistical studies have identified the solar wind conditions (high solar wind speed and high Mach number, etc.) that favor their generation. However, backstreaming foreshock ions are expected to most directly control how HFAs and FBs form, whereas the solar wind may partake in the formation process indirectly by determining foreshock ion properties. Using Magnetospheric Multiscale mission and Time History of Events and Macroscale Interactions during Substorms mission, we perform a statistical study of foreshock ion properties around 275 HFAs and FBs. We show that foreshock ions with a high foreshock‐to‐solar wind density ratio (>∼3%), high kinetic energy (>∼600 eV), large ratio of kinetic energy to thermal energy (>∼0.1), and large ratio of perpendicular temperature to parallel temperature (>∼1.4) favor HFA and FB formation. We also examine how these properties are related to solar wind conditions: high solar wind speed and oblique bow shock (angle between the interplanetary magnetic field and the bow shock normal) favor high kinetic energy of foreshock ions; foreshock ions have large ratio of kinetic energy to thermal energy at large(>30°); small(<30°), high Mach number, and closeness to the bow shock favor a high foreshock‐to‐solar wind density ratio. Our results provide further understanding of HFA and FB formation.more » « less
-
Bulk Properties of Pickup Ions Derived from the Ulysses Solar Wind Ion Composition Spectrometer DataAbstract Nonthermal, pickup ions (PUIs) represent an energetic component of the solar wind (SW). While a number of theoretical models have been proposed to describe the PUI flow, of major importance are in situ measurements providing us with the vital source of model validation. The Solar Wind Ion Composition Spectrometer (SWICS) instrument on board the Ulysses spacecraft was specifically designed for this purpose. Zhang et al. proposed a new, accurate method for the derivation of ion velocity distribution function in the SW frame on the basis of count rates collected by SWICS. We calculate the moments of these distribution functions for protons (H + ) and He + ions along the Ulysses trajectory for a period of 2 months including the Halloween 2003 solar storm. This gives us the time distributions of PUI density and temperature. We compare these with the results obtained earlier for the same interval of time, in which the ion spectra are converted to the SW frame using the narrow-beam approximation. Substantial differences are identified, which are of importance for the interpretation of PUI distributions in the 3D, time-dependent heliosphere. We also choose one of the shocks crossed by Ulysses during this time interval and analyze the distribution functions and PUI bulk properties in front of and behind it. The results are compared with the test-particle calculations and diffusive shock acceleration theory.more » « less
-
Context. Solar nanoflares are small impulsive events releasing magnetic energy in the corona. If nanoflares follow the same physics as their larger counterparts, they should emit hard X-rays (HXRs) but with a rather faint intensity. A copious and continuous presence of nanoflares would result in a sustained HXR emission. These nanoflares could deliver enormous amounts of energy into the solar corona, possibly accounting for its high temperatures. To date, there has not been any direct observation of such persistent HXRs from the quiescent Sun. However, the quiet-Sun HXR emission was constrained in 2010 using almost 12 days of quiescent solar off-pointing observations by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). These observations set 2 σ upper limits at 3.4 × 10 −2 photons s −1 cm −2 keV −1 and 9.5 × 10 −4 photons s −1 cm −2 keV −1 for the 3–6 keV and 6–12 keV energy ranges, respectively. Aims. Observing faint HXR emission is challenging because it demands high sensitivity and dynamic range instruments. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment excels in these two attributes when compared with RHESSI. FOXSI completed its second and third successful flights (FOXSI-2 and -3) on December 11, 2014, and September 7, 2018, respectively. This paper aims to constrain the quiet-Sun emission in the 5–10 keV energy range using FOXSI-2 and -3 observations. Methods. To fully characterize the sensitivity of FOXSI, we assessed ghost ray backgrounds generated by sources outside of the field of view via a ray-tracing algorithm. We used a Bayesian approach to provide upper thresholds of quiet-Sun HXR emission and probability distributions for the expected flux when a quiet-Sun HXR source is assumed to exist. Results. We found a FOXSI-2 upper limit of 4.5 × 10 −2 photons s −1 cm −2 keV −1 with a 2 σ confidence level in the 5–10 keV energy range. This limit is the first-ever quiet-Sun upper threshold in HXR reported using ∼1 min observations during a period of high solar activity. RHESSI was unable to measure the quiet-Sun emission during active times due to its limited dynamic range. During the FOXSI-3 flight, the Sun exhibited a fairly quiet configuration, displaying only one aged nonflaring active region. Using the entire ∼6.5 min of FOXSI-3 data, we report a 2 σ upper limit of ∼10 −4 photons s −1 cm −2 keV −1 for the 5–10 keV energy range. Conclusions. The FOXSI-3 upper limits on quiet-Sun emission are similar to that previously reported, but FOXSI-3 achieved these results with only 5 min of observations or about 1/2600 less time than RHESSI. A possible future spacecraft using hard X-ray focusing optics like those in the FOXSI concept would allow enough observation time to constrain the current HXR quiet-Sun limits further, or perhaps even make direct detections. This is the first report of quiet-Sun HXR limits from FOXSI and the first science paper using FOXSI-3 observations.more » « less
-
Abstract The Earth's magnetosheath and cusps emit soft X‐rays due to the charge exchange between highly charged solar wind ions and exospheric hydrogen atoms. The Lunar Environment Heliospheric X‐ray Imager and Solar wind Magnetosphere Ionosphere Link Explorer missions are scheduled to image the Earth's dayside magnetosphere system in soft X‐rays to investigate global‐scale magnetopause reconnection modes under varying solar wind conditions. The exospheric neutral hydrogen density distribution, especially the value of this density at the subsolar magnetopause is of particular interest for understanding X‐ray emissions near this boundary. This paper estimates the exospheric density during solar minimum using the X‐ray Multimirror Mission (XMM) astrophysics observatory. We selected an event on 12 November 2008 from the XMM data archive, which detects soft X‐rays of magnetosheath origin while solar wind and interplanetary magnetic field conditions are relatively constant. During the event the location of the magnetopause was measured in situ by the THEMIS mission, thus the location of the solar wind ions responsible for the magnetosheath emission is well constrained by observation. We estimated the exospheric density using the Open Geospace Global Circulation Model (OpenGGCM) and a spherically symmetric exosphere model. The ratio of the magnetosheath plasma flux between the OpenGGCM model and the THEMIS, was nearly 1, which means the magnetohydrodynamic model reasonably reproduces the magnetosheath plasma conditions. The OpenGGCM magnetosheath parameters were used to deconvolve soft X‐rays of exospheric origin from the XMM signal. The lower‐limit of the exospheric density of this solar minimum event is 36.8 ± 11.7 cm−3at 10 REsubsolar location.more » « less