Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2forcing within a single model, therebymore »
Urban heat waves (UHWs) are strongly associated with socioeconomic impacts. Here, we use an urban climate emulator combined with large ensemble global climate simulations to show that, at the urban scale a large proportion of the variability results from the model structural uncertainty in projecting UHWs in the coming decades under climate change. Omission of this uncertainty would considerably underestimate the risk of UHW. Results show that, for cities in four high-stake regions – the Great Lakes of North America, Southern Europe, Central India, and North China – a virtually unlikely (0.01% probability) UHW projected by single-model ensembles is estimated by our model with probabilities of 23.73%, 4.24%, 1.56%, and 14.76% respectively in 2061–2070 under a high-emission scenario. Our findings suggest that for urban-scale extremes, policymakers and stakeholders will have to plan for larger uncertainties than what a single model predicts if decisions are informed based on urban climate simulations.
- Publication Date:
- NSF-PAR ID:
- 10250756
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ecologists and fisheries managers are interested in monitoring economically important marine fish species and using this data to inform management strategies. Determining environmental factors that best predict changes in these populations, particularly under rapid climate change, are a priority. I illustrate the application of the least squares-based spline estimation and group LASSO (LSSGLASSO) procedure for selection of coefficient functions in single index varying coefficient models (SIVCMs) on an ecological data set that includes spatiotemporal environmental covariates suspected to play a role in the catches and weights of six groundfish species. Temporal trends in variable selection were apparent, though themore »
-
Paleoclimate proxy evidence suggests that the Atlantic meridional overturning circulation (AMOC) was about 1000 m shallower at the Last Glacial Maximum (LGM) compared to the present. Yet it remains unresolved what caused this glacial shoaling of the AMOC, and many climate models instead simulate a deeper AMOC under LGM forcing. While some studies suggest that Southern Ocean surface buoyancy forcing controls the AMOC depth, others have suggested alternatively that North Atlantic surface forcing or interior diabatic mixing plays the dominant role. To investigate the key processes that set the AMOC depth, here we carry out a number of MITgcm ocean-onlymore »
-
The Toba eruption ∼74,000 y ago was the largest volcanic eruption since the start of the Pleistocene and represents an important test case for understanding the effects of large explosive eruptions on climate and ecosystems. However, the magnitude and repercussions of climatic changes driven by the eruption are strongly debated. High-resolution paleoclimate and archaeological records from Africa find little evidence for the disruption of climate or human activity in the wake of the eruption in contrast with a controversial link with a bottleneck in human evolution and climate model simulations predicting strong volcanic cooling for up to a decade aftermore »
-
ABSTRACT Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The secondmore »