skip to main content

Title: Large model structural uncertainty in global projections of urban heat waves

Urban heat waves (UHWs) are strongly associated with socioeconomic impacts. Here, we use an urban climate emulator combined with large ensemble global climate simulations to show that, at the urban scale a large proportion of the variability results from the model structural uncertainty in projecting UHWs in the coming decades under climate change. Omission of this uncertainty would considerably underestimate the risk of UHW. Results show that, for cities in four high-stake regions – the Great Lakes of North America, Southern Europe, Central India, and North China – a virtually unlikely (0.01% probability) UHW projected by single-model ensembles is estimated by our model with probabilities of 23.73%, 4.24%, 1.56%, and 14.76% respectively in 2061–2070 under a high-emission scenario. Our findings suggest that for urban-scale extremes, policymakers and stakeholders will have to plan for larger uncertainties than what a single model predicts if decisions are informed based on urban climate simulations.

; ;
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Variability in the strength of low-cloud feedbacks across climate models is the primary contributor to the spread in their estimates of equilibrium climate sensitivity (ECS). This raises the question: What are the regional implications for key features of tropical climate of globally weak versus strong low-cloud feedbacks in response to greenhouse gas–induced warming? To address this question and formalize our understanding of cloud controls on tropical climate, we perform a suite of idealized fully coupled and slab-ocean climate simulations across which we systematically scale the strength of the low-cloud-cover feedback under abrupt 2 × CO2forcing within a single model, therebymore »isolating the impact of low-cloud feedback strength. The feedback strength is varied by modifying the stratus cloud fraction so that it is a function of not only local conditions but also global temperature in a series of abrupt 2 × CO2sensitivity experiments. The unperturbed decrease in low cloud cover (LCC) under 2 × CO2is greatest in the mid- and high-latitude oceans, and the subtropical eastern Pacific and Atlantic, a pattern that is magnified as the feedback strength is scaled. Consequently, sea surface temperature (SST) increases more in these regions as well as the Pacific cold tongue. As the strength of the low-cloud feedback increases this results in not only increased ECS, but also an enhanced reduction of the large-scale zonal and meridional SST gradients (structural climate sensitivity), with implications for the atmospheric Hadley and Walker circulations, as well as the hydrological cycle. The relevance of our results to simulating past warm climate is also discussed.

    « less
  2. Abstract

    Ecologists and fisheries managers are interested in monitoring economically important marine fish species and using this data to inform management strategies. Determining environmental factors that best predict changes in these populations, particularly under rapid climate change, are a priority. I illustrate the application of the least squares-based spline estimation and group LASSO (LSSGLASSO) procedure for selection of coefficient functions in single index varying coefficient models (SIVCMs) on an ecological data set that includes spatiotemporal environmental covariates suspected to play a role in the catches and weights of six groundfish species. Temporal trends in variable selection were apparent, though themore »selection of variables was largely unrelated to common North Pacific climate indices. These results indicate that the strength of an environmental variable’s effect on a groundfish population may change over time, and not necessarily in-step with known low-frequency patterns of ocean-climate variability commonly attributable to large-scale regime shifts in the North Pacific. My application of the LSSGLASSO procedure for SIVCMs to deep water species using environmental data from various sources illustrates how variable selection with a flexible model structure can produce informative inference for remote and hard-to-reach animal populations.

    « less
  3. Paleoclimate proxy evidence suggests that the Atlantic meridional overturning circulation (AMOC) was about 1000 m shallower at the Last Glacial Maximum (LGM) compared to the present. Yet it remains unresolved what caused this glacial shoaling of the AMOC, and many climate models instead simulate a deeper AMOC under LGM forcing. While some studies suggest that Southern Ocean surface buoyancy forcing controls the AMOC depth, others have suggested alternatively that North Atlantic surface forcing or interior diabatic mixing plays the dominant role. To investigate the key processes that set the AMOC depth, here we carry out a number of MITgcm ocean-onlymore »simulations with surface forcing fields specified from the simulation results of three coupled climate models that span much of the range of glacial AMOC depth changes in phase 3 of the Paleoclimate Model Intercomparison Project (PMIP3). We find that the MITgcm simulations successfully reproduce the changes in AMOC depth between glacial and modern conditions simulated in these three PMIP3 models. By varying the restoring time scale in the surface forcing, we show that the AMOC depth is more strongly constrained by the surface density field than the surface buoyancy flux field. Based on these results, we propose a mechanism by which the surface density fields in the high latitudes of both hemispheres are connected to the AMOC depth. We illustrate the mechanism using MITgcm simulations with idealized surface forcing perturbations as well as an idealized conceptual geometric model. These results suggest that the AMOC depth is largely determined by the surface density fields in both the North Atlantic and the Southern Ocean.

    « less
  4. The Toba eruption ∼74,000 y ago was the largest volcanic eruption since the start of the Pleistocene and represents an important test case for understanding the effects of large explosive eruptions on climate and ecosystems. However, the magnitude and repercussions of climatic changes driven by the eruption are strongly debated. High-resolution paleoclimate and archaeological records from Africa find little evidence for the disruption of climate or human activity in the wake of the eruption in contrast with a controversial link with a bottleneck in human evolution and climate model simulations predicting strong volcanic cooling for up to a decade aftermore »a Toba-scale eruption. Here, we use a large ensemble of high-resolution Community Earth System Model (CESM1.3) simulations to reconcile climate model predictions with paleoclimate records, accounting for uncertainties in the magnitude of Toba sulfur emissions with high and low emission scenarios. We find a near-zero probability of annual mean surface temperature anomalies exceeding 4 °C in most of Africa in contrast with near 100% probabilities of cooling this severe in Asia and North America for the high sulfur emission case. The likelihood of strong decreases in precipitation is low in most of Africa. Therefore, even Toba sulfur release at the upper range of plausible estimates remains consistent with the muted response in Africa indicated by paleoclimate proxies. Our results provide a probabilistic view of the uneven patterns of volcanic climate disruption during a crucial interval in human evolution, with implications for understanding the range of environmental impacts from past and future supereruptions.

    « less

    Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The secondmore »uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.

    « less