skip to main content


Title: Observed increasing water constraint on vegetation growth over the last three decades
Abstract

Despite the growing interest in predicting global and regional trends in vegetation productivity in response to a changing climate, changes in water constraint on vegetation productivity (i.e., water limitations on vegetation growth) remain poorly understood. Here we conduct a comprehensive evaluation of changes in water constraint on vegetation growth in the extratropical Northern Hemisphere between 1982 and 2015. We document a significant increase in vegetation water constraint over this period. Remarkably divergent trends were found with vegetation water deficit areas significantly expanding, and water surplus areas significantly shrinking. The increase in water constraints associated with water deficit was also consistent with a decreasing response time to water scarcity, suggesting a stronger susceptibility of vegetation to drought. We also observed shortened water surplus period for water surplus areas, suggesting a shortened exposure to water surplus associated with humid conditions. These observed changes were found to be attributable to trends in temperature, solar radiation, precipitation, and atmospheric CO2. Our findings highlight the need for a more explicit consideration of the influence of water constraints on regional and global vegetation under a warming climate.

 
more » « less
NSF-PAR ID:
10250758
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future shifts in rainfall, temperature and carbon dioxide (CO2) will impact hydrologic and ecosystem behavior. These changes are expected to vary in space because water and nutrient availability vary with terrain and soil properties, with feedbacks on vegetation and canopy adjustment. However, within‐basin patterns and spatial dependencies of ecohydrologic dynamics have often been ignored in future scenario modeling. We used a distributed process‐based ecohydrologic model, the Regional Hydro‐Ecological Simulation System, as a virtual catchment to examine spatial and temporal variability in climate change response. We found spatial heterogeneity in Leaf Area Index, transpiration and soil saturation trends, with some scenarios even showing opposite trends in different locations. For example, in a drying scenario, decreased vegetation productivity in water‐limited upslope areas enhanced downslope nutrient subsidies so that productivity increased in the nutrient‐limited riparian zone. In scenarios with both warming and rising CO2, amplifying feedbacks between mineralization, vegetation water use efficiency and litter fall led to large increases in growth that were often strongest in the riparian area (depending on the coincident rainfall change). Modeled transpiration trends were determined by the competing effects of vegetation growth and changing water use efficiency. Overall, the riparian zone experienced substantially different (and even opposing) ecohydrologic trends compared to the rest of the catchment, which is important because productive riparian areas often contribute a disproportionate amount of vegetation growth, transpiration and nutrient consumption to catchment totals. Models that are spatially lumped, lack key ecosystem‐driving dynamics, or ignore lateral transport could misrepresent the complex ecohydrologic changes catchments could experience in the future.

     
    more » « less
  2. Abstract

    In this study, we report 20 years of data from three ponderosa pine plantations in northern California. Our sites span a natural gradient of forest productivity where climate variability and edaphic conditions delineate marked differences in baseline productivity (approximately threefold). Experimental herbicide application and fertilization significantly reduced competition and improved tree growth by 1.4‐ to 2.2‐fold across sites. At the site of lowest productivity, where soils are poorly developed and water limiting, tree growth increased strongly in response to understory suppression. Small but significant improvements in tree growth were observed in response to understory suppression at the moderate‐productivity site. At the site of highest productivity, where climate is favorable and soils well developed, fertilization increased productivity to a greater extent than did understory suppression. In most cases, the effect of understory suppression and fertilization caused an unexpected growth release, exceeding the anticipated maximum productivity by >5 m of additional height and 60–100% more basal area. At the site of highest productivity, however, understory suppression caused a weak increase on late‐season growth compared to fertilization alone, suggesting a beneficial effect of understory vegetation on long‐term growth at that site. Tree ring cellulose carbon isotopes indicate a negative relationship between intrinsic water use efficiency (iWUE) and tree growth in control stands, which shifted to a positive relationship as both iWUE and tree growth increased in response to management. Cellulose oxygen isotope ratios (δ18O) were positively correlated with iWUE and negatively correlated with vapor pressure deficit across sites, but δ18O was not a strong predictor of tree growth.

     
    more » « less
  3. The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate‐growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long‐term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate‐growth response. The negative radial growth response to warm and dry early‐ to mid‐summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13C was reduced in warm, dry summers and further diminished on south‐facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13C discrimination, and increased intrinsic water‐use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate‐growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure. 
    more » « less
  4. null (Ed.)
    Drylands are a critical part of the earth system in terms of total area, socioeconomic and ecological importance. However, while drylands are known for their contribution to inter-annual atmospheric CO 2 variability, they are sometimes overlooked in discussions of global carbon stocks. Here, in preparation for the November 2021 UN Climate Change Conference (COP26), we review dryland systems with emphasis on their role in current and future carbon storage, response to climate change and potential to contribute to a carbon neutral future. Current estimates of carbon in dryland soils and vegetation suggest they are significant at global scale, containing approximately 30% of global carbon in above and below-ground biomass, and surface-layer soil carbon (top 30 cm). As ecosystems that are limited by water, the drylands are vulnerable to climate change. Climate change impacts are, however, dependent on future trends in rainfall that include both drying and wetting trends at regional scales. Regional rainfall trends will initiate trends in dryland productivity, vegetation structure and soil carbon storage. However, while management of fire and herbivory can contribute to increased carbon sequestration, impacts are dependent on locally unique ecosystem responses and climate-soil-plant interactions. Similarly, while community based agroforestry initiatives have been successful in some areas, large-scale afforestation programs are logistically infeasible and sometimes ecologically inappropriate at larger scales. As climate changes, top-down prescriptive measures designed to increase carbon storage should be avoided in favour of locally-adapted approaches that balance carbon management priorities with local livelihoods, ecosystem function, biodiversity and cultural, social and economic priorities. 
    more » « less
  5. Abstract

    Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.

     
    more » « less