Chasmataspidids are a group of Early Paleozoic (Middle Ordovician-Middle Devonian)chelicerates defined by an apparently unique opisthosomal tagmosis consisting of a microtergite, a three-segmented fused buckler, and a nine-segmented postabdomen. Although the number of known chasmataspidid species increased by half during the past decade, the group has not been a subject of detailed phylogenetic analysis, and its placement within Chelicerata is uncertain. Though recent analyses that include chasmataspidids support a monophyletic Chasmataspidida as sister to Sclerophorata (Eurypterida and Arachnida), few have sampled more than three of the 14 currently recognized species. Previous workers have suggested chasmataspidids may be a polyphyletic or paraphyletic group, or that chasmataspidids may resolve as the sister taxon to eurypterids, or even as a clade within Eurypterida. Without a broader sampling of chasmataspidids it is not possible to adequately test these various hypotheses, while a robust phylogenetic framework in necessary for understanding macroevolutionary and biogeographic trends within the group. Chasmataspidids also represent the earliest preserved euchelicerate in the fossil record, with Chasmataspis dated to approximately 478 million years ago, and as such its phylogenetic position in relation to other euchelicerates has implications for the divergence times of those clades. We present a new phylogenetic matrix comprising 81 characters coded for every currently described chasmataspidid species, analysis of which under maximum parsimony and Bayesian inference results in concordant phylogenetic topologies. Chasmataspidida resolves as in most recent analyses as a monophyletic clade sister to Sclerophorata, indicating that Xiphosura, Chasmataspidida, and Sclerophorata likely diverged in the Early Ordovician. The analysis also supports a taxonomic revision within Chasmataspidida; we propose dividing the clade into two superfamilies, with four constituent families. As part of this study the Silurian taxon Loganamaraspis was reevaluated and the morphology of appendage VI, previously considered to be retained as a walking limb, could not be ascertained.
more »
« less
Towards rectifying limitations on species delineation in dusky salamanders (Desmognathus: Plethodontidae): An ecoregion-drainage sampling grid reveals additional cryptic clades
Dusky salamanders (Desmognathus) constitute a large, species-rich group within the family Plethodontidae, and though their systematic relationships have been addressed extensively, most studies have centered on particular species complexes and therefore offer only piecemeal phylogenetic perspective on the genus. Recent work has revealed Desmognathus to be far more clade rich—35 reciprocally monophyletic clades versus 22 recognized species—than previously imagined, results that, in turn, provide impetus for additional survey effort within clades and across geographic areas thus far sparsely sampled. We conceived and implemented a sampling regime combining level IV ecoregions and independent river drainages to yield a geographic grid for comprehensive recovery of all genealogically exclusive clades. We sampled over 550 populations throughout the distribution of Desmognathus in the eastern United States of America and generated mitochondrial DNA sequence data (mtDNA; 1,991 bp) for 536 specimens. A Bayesian phylogenetic reconstruction of the resulting haplotypes revealed forty-five reciprocally monophyletic clades, eleven of which have never been included in a comprehensive phylogenetic reconstruction, and an additional three not represented in any molecular systematic survey. Although general limitations associated with mtDNA data preclude new species delineation, we profile each of the 45 clades and assign names to 10 new clades (following a protocol for previous clade nomenclature). We also redefine several species complexes and erect new informal species complexes. Our dataset, which contains topotypic samples for nearly every currently recognized species and most synonymies, will offer a robust framework for future efforts to delimit species within Desmognathus.
more »
« less
- Award ID(s):
- 1656111
- PAR ID:
- 10250791
- Date Published:
- Journal Name:
- Zootaxa
- Volume:
- 4734
- Issue:
- 1
- ISSN:
- 1175-5326
- Page Range / eLocation ID:
- 1 to 61
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)How close relatives maintain species boundaries in sympatry remains a critical question in biodiversity research. Here we introduce Lobelia sect. Lobelia (Campanulaceae) as a useful clade for investigating such questions. Polyphyly within this clade was strongly suspected because many of the 26 species are cross-compatible and show remarkable overlap in distribution, morphology, ecology, and life history. Indeed, the species Lobelia × rogersii has a purported hybrid origin from Lobelia puberula and Lobelia brevifolia, and the well-known cultivar Lobelia × speciosa results from mating between Lobelia siphilitica and Lobelia cardinalis. We carried out a comprehensive evolutionary investigation of Lobelia sect. Lobelia, including phylogenetic inference, divergence time estimates, and population structure analyses using 729 accessions from 193 natural population sites representing 1–13 individuals per population per species. In contrast to expectations, nearly all species were recovered as reciprocally monophyletic with strong topological support and low levels of interspecific gene flow. An exception to this general pattern is observed in the Florida panhandle, where Lobelia glandulosa and Lobelia apalachicolensis co-occur and appear to be actively hybridizing. We conclude that North American Lobelia species are genetically cohesive, despite significant geographic overlap, frequent co-occurrence, morphological similarity, and broad interfertility in artificial crosses.more » « less
-
Abstract Island archipelagos in the South Pacific have relatively high species endemism within the insect order Odonata, specifically damselflies. Nesobasis Selys, 1891, an endemic damselfly genus from Fiji, includes over 20 species, but a clear understanding of its evolutionary relationship to other damselflies in the region is lacking. Scientists have questioned the monophyly of Nesobasis due to variations within the genus leading to the establishment of three divisions provisionally named as: comosa-, erythrops- and longistyla- groups. However, Nesobasis has shown to be monophyletic in previous phylogenetic analyses. Using additional species in this study, we investigate the phylogenetic relationships between Nesobasis and other damselflies from the region, specifically the endemic Vanuatubasis Ober & Staniczek, 2009 from the neighboring island archipelagos of Vanuatu. The relationship between these taxa has not yet been examined with molecular data. Five genes were used in a maximum likelihood phylogenetic reconstruction and examined morphological data to determine the relationship between these genera. Our results recover three distinct clades overall with Vanuatubasis nested within Nesobasis (i.e., non-monophyletic). Vanuatubasis is sister to the longistyla and erythrops groups. The third group, comosa, was found sister to the clade of Vanuatubasis ( longistyla + erythrops ). As a result of these findings, we propose the new genus, Nikoulabasis gen. nov.more » « less
-
In 2009, Jones and Deitz published a tribe-level taxonomic revision and reclassification of the cryptic, arboreal leafhopper subfamily Ledrinae Kirschbaum, 1868 (Hemiptera: Cicadellidae), based on cladistic analyses of 235 morphological features for 75 cicadellid species. Their evolutionary reconstructions found strong node support for a monophyletic ingroup comprising five lineages—each morphologically and geographically cohesive—and also identified numerous traditionally placed taxa (sensu Oman et al 1990) that did not belong. In light of the robustness of their results, the authors recognized the five independent ingroup clades as tribes of Ledrinae, and described three of these as new.more » « less
-
The bathyal serpulid Laminatubus alvini ten Hove & Zibrowius, 1986 was described from the periphery of hydrothermal vents of the Galapagos Rift and has been recorded from other vent communities of the East Pacific Rise (EPR). Here we assessed the biodiversity of serpulids collected from eastern Pacific hydrothermal vents and methane seeps using DNA sequences and morphology. Laminatubus alvini showed little genetic variation over a wide geographic range from the Alarcon Rise vents in southern Gulf of California (~23°N), to at least a point at 38°S on the EPR. Specimens from several methane seeps off Costa Rica and the Gulf of California (Mexico) differed markedly from those of Laminatubus alvini on DNA sequence data and in having seven thoracic chaetigers and lacking Spirobranchus-type special collar chaetae, thus fitting the diagnosis of Neovermilia. However, phylogenetic analysis of molecular data showed that L. alvini and the seep specimens form a well-supported clade. Moreover, among the seep specimens there was minimally a ~7% distance in mitochondrial cytochrome b sequences between a shallow-water (1000 m) seep clade restricted to Costa Rica and a deep-water clade (1800 m) from Costa Rica to Gulf of California. We describe the seep taxa here as morphologically indistinguishable L. paulbrooksi n. sp. and L. joycebrooksae n. sp.more » « less
An official website of the United States government

