We describe the design of 3CPS, a compiler intermediate representation (IR) we have developed for use in compiling call-by-value functional languages such as SML, OCaml, Scheme, and Lisp. The language is a low-level form designed in tandem with a matching suite of static analyses. It reflects our belief that the core task of an optimising compiler for a functional language is to reason about the environment structure of the program. Our IR is distinguished by the presence of extent annotations, added to all variables (and verified by static analysis). These annotations are defined in terms of the semantics of the IR, but they directly tell the compiler what machine resources are needed to implement the environment structure of each annotated variable.
more »
« less
Theseus: an experiment in operating system structure and state management
This paper describes an operating system (OS) called The- seus. Theseus is the result of multi-year experimentation to redesign and improve OS modularity by reducing the states one component holds for another, and to leverage a safe programming language, namely Rust, to shift as many OS responsibilities as possible to the compiler. Theseus embodies two primary contributions. First, an OS structure in which many tiny components with clearly-defined, runtime-persistent bounds interact without holding states for each other. Second, an intralingual approach that realizes the OS itself using language-level mechanisms such that the compiler can enforce invariants about OS semantics. Theseus’s structure, intralingual design, and state manage- ment realize live evolution and fault recovery for core OS components in ways beyond that of existing works.
more »
« less
- Award ID(s):
- 2016422
- PAR ID:
- 10250904
- Date Published:
- Journal Name:
- Proc. USENIX Symposium on Operating Systems Design and Implementation (OSDI)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Compositional compiler verification is a difficult problem that focuses on separate compilation of program components with possibly different verified compilers. Logical relations are widely used in proving correctness of program transformations in higher-order languages; however, they do not scale to compositional verification of multi-pass compilers due to their lack of transitivity. The only known technique to apply to compositional verification of multi-pass compilers for higher-order languages is parametric inter-language simulations (PILS), which is however significantly more complicated than traditional proof techniques for compiler correctness. In this paper, we present a novel verification framework forlightweight compositional compiler correctness. We demonstrate that by imposing the additional restriction that program components are compiled by pipelines that go throughthe same sequence of intermediate representations, logical relation proofs can be transitively composed in order to derive an end-to-end compositional specification for multi-pass compiler pipelines. Unlike traditional logical-relation frameworks, our framework supports divergence preservation—even when transformations reduce the number of program steps. We achieve this by parameterizing our logical relations with a pair ofrelational invariants. We apply this technique to verify a multi-pass, optimizing middle-end pipeline for CertiCoq, a compiler from Gallina (Coq’s specification language) to C. The pipeline optimizes and closure-converts an untyped functional intermediate language (ANF or CPS) to a subset of that language without nested functions, which can be easily code-generated to low-level languages. Notably, our pipeline performs more complex closure-allocation optimizations than the state of the art in verified compilation. Using our novel verification framework, we prove an end-to-end theorem for our pipeline that covers both termination and divergence and applies to whole-program and separate compilation, even when different modules are compiled with different optimizations. Our results are mechanized in the Coq proof assistant.more » « less
-
We introduce SLANG.D, an extension to the Slang shading language that incorporates first-class automatic differentiation support. The new shading language allows us to transform a Direct3D-based path tracer to be fully differentiable with minor modifications to existing code. SLANG.D enables a shared ecosystem between machine learning frameworks and pre-existing graphics hardware API-based rendering systems, promoting the interchange of components and ideas across these two domains. Our contributions include a differentiable type system designed to ensure type safety and semantic clarity in codebases that blend differentiable and non-differentiable code, language primitives that automatically generate both forward and reverse gradient propagation methods, and a compiler architecture that generates efficient derivative propagation shader code for graphics pipelines. Our compiler supports differentiating code that involves arbitrary control-flow, dynamic dispatch, generics and higher-order differentiation, while providing developers flexible control of checkpointing and gradient aggregation strategies for best performance. Our system allows us to differentiate an existing real-time path tracer, Falcor, with minimal change to its shader code. We show that the compiler-generated derivative kernels perform as efficiently as handwritten ones. In several benchmarks, the SLANG.D code achieves significant speedup when compared to prior automatic differentiation systems.more » « less
-
null (Ed.)We present Calyx, a new intermediate language (IL) for compiling high-level programs into hardware designs. Calyx combines a hardware-like structural language with a software-like control flow representation with loops and conditionals. This split representation enables a new class of hardware-focused optimizations that require both structural and control flow information which are crucial for high-level programming models for hardware design. The Calyx compiler lowers control flow constructs using finite-state machines and generates synthesizable hardware descriptions. We have implemented Calyx in an optimizing compiler that translates high-level programs to hardware. We demonstrate Calyx using two DSL-to-RTL compilers, a systolic array generator and one for a recent imperative accelerator language, and compare them to equivalent designs generated using high-level synthesis (HLS). The systolic arrays are 4.6× faster and 1.11× larger on average than HLS implementations, and the HLS-like imperative language compiler is within a few factors of a highly optimized commercial HLS toolchain. We also describe three optimizations implemented in the Calyx compiler.more » « less
-
Gonnord, Laure; Titolo, Laura (Ed.)Just-in-Time (JIT) compilers are widely used to improve the performance of interpreter-based language implementations by creating optimized code at runtime. However, bugs in the JIT compiler’s code manipulation and optimization can result in the generation of incorrect code. Such bugs can be difficult to diagnose and fix, and can result in exploitable vulnerabilities. Unfortunately, existing approaches to automatic bug localization do not carry over well to such bugs. This paper discusses a different approach to analyzing JIT compiler optimization behaviors, based on using dynamic analysis to construct abstract models of the JIT compiler’s optimizer and back end. By comparing the models obtained for buggy and non-buggy executions of the JIT compiler, we can pinpoint the components of the JIT compiler’s internal representation that have been affected by the bug; this can then be mapped back to identify the buggy code. Our ex- periments with two real bugs for Google V8 JIT compiler, TurboFan, show the utility and practicality of our approach.more » « less
An official website of the United States government

