skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Forest policy and management approaches for carbon dioxide removal
Forests increasingly will be used for carbon dioxide removal (CDR) as a natural climate solution, and the implementation of forest-based CDR presents a complex public policy challenge. In this paper, our goal is to review a range of policy tools in place to support use of forests for CDR and demonstrate how concepts from the policy design literature can inform our understanding of this domain. We explore how the utilization of different policy tools shapes our ability to use forests to mitigate and adapt to climate change and consider the challenges of policy mixes and integration, taking a close look at three areas of international forest policy, including the Kyoto Protocol's Clean Development Mechanism, Reducing Emissions from Deforestation and Forest Degradation (REDD+) and voluntary carbon offset markets. As it is our expertise, we then examine in detail the case of the USA as a country that lacks aggressive implementation of national climate policies but has potential to increase CDR through reforestation and existing forest management on both public and private land. For forest-based CDR to succeed, a wide array of policy tools will have to be implemented in a variety of contexts with an eye towards overcoming the challenges of policy design with regard to uncertainty in policy outcomes, policy coherence around managing forests for carbon simultaneously with other goals and integration across governance contexts and levels.  more » « less
Award ID(s):
1702996 1702676
NSF-PAR ID:
10251047
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Interface Focus
Volume:
10
Issue:
5
ISSN:
2042-8898
Page Range / eLocation ID:
20200001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This WIP presentation is intended to share and gather feedback on the development of an observation protocol for K-12 integrated STEM instruction, the STEM-OP. Specifically, the STEM-OP is being developed for use in K-12 science and/or engineering settings where integrated STEM instruction takes place. While the importance of integrated STEM education is established through national policy documents, there remains disagreement on models and effective approaches for integrated STEM instruction. Our broad definition of integrated STEM includes the use of two or more STEM disciplines to solve a real-world problem or design challenge that supports student development of 21st century skills. This issue is confounded by the lack of observation protocols sensitive to integrated STEM teaching and learning that can be used to inform research of the effectiveness of new models and strategies. Existing instruments most commonly used by researchers, such as the Reformed Teaching Observation Protocol (RTOP), were designed prior to the development of the Next Generation Science Standards and the integration of engineering into science standards. These instruments were also designed for use in reform-based science classrooms, not engineering or integrated STEM learning environments. While engineering-focused observation protocols do exist for K-12 classrooms, they do not evaluate beyond an engineering focus, making them limited tools to evaluate integrated STEM instruction. In order to facilitate the implementation of integrated STEM in K-12 classrooms and the development of the nascent integrated STEM education literature, our research team is developing a new integrated STEM observation protocol for use in K-12 science and engineering classrooms. This valid and reliable instrument will be designed for use in a variety of educational contexts and by different education stakeholders to increase the quality of K-12 STEM education. At the end of this project, the STEM-OP will be made available through an online platform that will include an embedded training program to facilitate its broad use. In the first year of this four-year project, we are working on the initial development of the STEM-OP through video analysis and exploratory factor analysis. We are utilizing existing classroom video from a previous project with approximately 2,000 unique classroom videos representing a variety of grade levels (4-9), science content (life, earth, and physical science), engineering design challenges, and school demographics (urban, suburban). The development of the STEM-OP is guided by published frameworks that focus on providing quality K-12 integrated STEM and engineering education, such as the Framework for Quality K-12 Engineering Education. Our anticipated results at the time the ASEE meeting will include a review of our item development process and finalized items included on the draft STEM-OP. Additionally, we anticipate being able to share findings from the exploratory factor analysis (EFA) on our video-coded data, which will identify distinct instructional dimensions responsible for integrated STEM instruction. We value the opportunity to gather feedback from the engineering education community as the integration of engineering design and practices is integral to quality integrated STEM instruction. 
    more » « less
  2. Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y −1 . Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. 
    more » « less
  3. Since the 1980s, the U.S. Forest Service (USFS) has transformed from an agency predominantly focused on timber production to one focused on recreation and ecosystem management. This shift is particularly remarkable because it occurred without major substantive national forest policy changes. During this period, many national forests changed their forest planning processes in ways that provided greater opportunity for public input into forest plans, and in 2012 the USFS issued new planning rules that institutionalized these practices. In this study, we ask: how has the planning process changed over time, and how have these changes shaped forest plan outcomes? To answer these questions, we conduct a comparative case study of two national forests—the Lake Tahoe Basin Management Unit and the Inyo National Forest—that produced forest plans in the 1980s and again in the 2010s. We use the Network of Action Situations (NAS) approach to compare planning processes over time and across forests. We find that in addition to the changes mandated by the 2012 rules, both forests developed a series of forums to engage the public in plan development and review, and that increased stakeholder engagement has helped shape forest priorities. These findings suggest that greater involvement by regional stakeholders could pressure the USFS to adopt more regional approaches for addressing challenges like climate change and wildfire risk. 
    more » « less
  4. null (Ed.)
    Abstract. Meeting internationally agreed-upon climate targets requirescarbon dioxide removal (CDR) strategies coupled with an urgent phase-down offossil fuel emissions. However, the efficacy and wider impacts of CDR arepoorly understood. Enhanced rock weathering (ERW) is a land-based CDRstrategy requiring large-scale field trials. Here we show that a low 3.44 t ha−1 wollastonite treatment in an 11.8 ha acid-rain-impacted forested watershed in New Hampshire, USA, led to cumulative carbon capture by carbonic acid weathering of 0.025–0.13 t CO2 ha−1 over 15 years. Despite a 0.8–2.4 t CO2 ha−1 logistical carbon penalty from mining,grinding, transportation, and spreading, by 2015 weathering together withincreased forest productivity led to net CDR of 8.5–11.5 t CO2 ha−1. Our results demonstrate that ERW may be an effective, scalableCDR strategy for acid-impacted forests but at large scales requiressustainable sources of silicate rock dust. 
    more » « less
  5. Abstract Measuring, reporting, and verification (MRV) of ocean-based carbon dioxide removal (CDR) presents challenges due to the dynamic nature of the ocean and the complex processes influencing marine carbonate chemistry. Given these challenges, finding the optimal sampling strategies and suite of parameters to be measured is a timely research question. While traditional carbonate parameters such as total alkalinity (TA), dissolved inorganic carbon (DIC), pH, and seawater pCO2 are commonly considered, exploring the potential of carbon isotopes for quantifying additional CO2 uptake remains a relatively unexplored research avenue. In this study, we use a coupled physical-biogeochemical model of the California Current System (CCS) to run a suite of Ocean Alkalinity Enhancement (OAE) simulations. The physical circulation for the CCS is generated using a nested implementation of the Regional Ocean Modeling System (ROMS) with an outer domain of 1/10 ̊ (~10 km) and an inner domain of 1/30 ̊ (~3 km) resolution. The biogeochemical model, NEMUCSC, is a customized version of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) that includes carbon cycling and carbon isotopes. The CCS is one of four global eastern boundary upwelling systems characterized by high biological activity and CO2 concentrations. Consequently, the CCS represents an essential test case for investigating the efficacy and potential side effects of OAE deployments. The study aims to address two key questions: (1) the relative merit of OAE to counter ocean acidification versus the additional sequestration of CO2 from the atmosphere, and (2) the footprint of potentially harmful seawater chemistry adjacent to OAE deployments. We plan to leverage these high-resolution model results to competitively evaluate different MRV strategies, with a specific focus on analyzing the spatiotemporal distribution of carbon isotopic signatures following OAE. In this talk, we will showcase our initial results and discuss challenges in integrating high-resolution regional modeling into models of the global carbon cycle. More broadly, this work aims to provide insights into the plausibility of OAE as a climate solution that maintains ocean health and to inform accurate quantification of carbon uptake for MRV purposes. https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1437343 
    more » « less