skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Are Larger Pretrained Language Models Uniformly Better? Comparing Performance at the Instance Level
Larger language models have higher accuracy on average, but are they better on every single instance (datapoint)? Some work suggests larger models have higher out-of-distribution robustness, while other work suggests they have lower accuracy on rare subgroups. To understand these differences, we investigate these models at the level of individual instances. However, one major challenge is that individual predictions are highly sensitive to noise in the randomness in training. We develop statistically rigorous methods to address this, and after accounting for pretraining and finetuning noise, we find that our BERT-Large is worse than BERT-Mini on at least 1-4% of instances across MNLI, SST-2, and QQP, compared to the overall accuracy improvement of 2-10%. We also find that finetuning noise increases with model size and that instance-level accuracy has momentum: improvement from BERT-Mini to BERT-Medium correlates with improvement from BERT-Medium to BERT-Large. Our findings suggest that instance-level predictions provide a rich source of information; we therefore, recommend that researchers supplement model weights with model predictions.  more » « less
Award ID(s):
2031899
PAR ID:
10251086
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
ISSN:
2307-387X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The transfer learning pretraining-finetuning  paradigm has revolutionized the natural language processing field yielding state-of the art results in  several subfields such as text classification and question answering. However, little work has been done investigating pretrained language models for the  open student answer assessment task. In this paper, we fine tune pretrained T5, BERT, RoBERTa, DistilBERT, ALBERT and XLNet models on the DT-Grade dataset which contains freely generated (or open) student answers together with judgment of their correctness. The experimental results demonstrated the effectiveness of these models based on the transfer learning pretraining-finetuning paradigm for open student answer assessment. An improvement of 8%-15% in accuracy was obtained over previous methods. Particularly, a T5 based method led to state-of-the-art results with an accuracy and F1 score of 0.88. 
    more » « less
  2. null (Ed.)
    This paper aims to provide understandings for the effect of an over-parameterized model, e.g. a deep neural network, memorizing instance-dependent noisy labels. We first quantify the harms caused by memorizing noisy instances, and show the disparate impacts of noisy labels for sample instances with different representation frequencies. We then analyze how several popular solutions for learning with noisy labels mitigate this harm at the instance level. Our analysis reveals that existing approaches lead to disparate treatments when handling noisy instances. While higher-frequency instances often enjoy a high probability of an improvement by applying these solutions, lower-frequency instances do not. Our analysis reveals new understandings for when these approaches work, and provides theoretical justifications for previously reported empirical observations. This observation requires us to rethink the distribution of label noise across instances and calls for different treatments for instances in different regimes. 
    more » « less
  3. Large Language Models (LLMs) are so powerful that they sometimes learn correlations between labels and features that are irrelevant to the task, leading to poor generalization on out-of-distribution data. We propose explanation-based finetuning as a general approach to mitigate LLMs’ reliance on spurious correlations. Unlike standard finetuning where the model only predicts the answer given the input, we finetune the model to additionally generate a free-text explanation supporting its answer. To evaluate our method, we finetune the model on artificially constructed training sets containing different types of spurious cues, and test it on a test set without these cues. Compared to standard finetuning, our method makes GPT-3 (davinci) remarkably more robust against spurious cues in terms of accuracy drop across four classification tasks: ComVE (+1.2), CREAK (+9.1), e-SNLI (+15.4), and SBIC (+6.5). The efficacy generalizes across multiple model families and scales, with greater gains for larger models. Finally, our method also works well with explanations generated by the model, implying its applicability to more datasets without human-written explanations. 
    more » « less
  4. Learning representations for individual instances when only bag-level labels are available is a fundamental challenge in multiple instance learning (MIL). Recent works have shown promising results using contrastive self-supervised learning (CSSL), which learns to push apart representations corresponding to two different randomly-selected instances. Unfortunately, in real-world applications such as medical image classification, there is often class imbalance, so randomly-selected instances mostly belong to the same majority class, which precludes CSSL from learning inter-class differences. To address this issue, we propose a novel framework, Iterative Self-paced Supervised Contrastive Learning for MIL Representations (ItS2CLR), which improves the learned representation by exploiting instance-level pseudo labels derived from the bag-level labels. The framework employs a novel self-paced sampling strategy to ensure the accuracy of pseudo labels. We evaluate ItS2CLR on three medical datasets, showing that it improves the quality of instance-level pseudo labels and representations, and outperforms existing MIL methods in terms of both bag and instance level accuracy. Code is available at this https URL 
    more » « less
  5. null (Ed.)
    Crowdsourcing provides a practical way to obtain large amounts of labeled data at a low cost. However, the annotation quality of annotators varies considerably, which imposes new challenges in learning a high-quality model from the crowdsourced annotations. In this work, we provide a new perspective to decompose annotation noise into common noise and individual noise and differentiate the source of confusion based on instance difficulty and annotator expertise on a per-instance-annotator basis. We realize this new crowdsourcing model by an end-to-end learning solution with two types of noise adaptation layers: one is shared across annotators to capture their commonly shared confusions, and the other one is pertaining to each annotator to realize individual confusion. To recognize the source of noise in each annotation, we use an auxiliary network to choose from the two noise adaptation layers with respect to both instances and annotators. Extensive experiments on both synthesized and real-world benchmarks demonstrate the effectiveness of our proposed common noise adaptation solution. 
    more » « less